

SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD and S2

Fatima Amanat, Mahima Thapa, Tinting Lei, Shaza M. Sayed Ahmed, Daniel C. Adelsberg, Juan Manuel Carreno, Shirin Strohmeier, Aaron J. Schmitz, Sarah Zafar, Julian Q. Zhou, Willemijn Rijnink, Hala Alshammary, Nicholas Borcherding, Ana Gonzalez Reiche, Komal Srivastava, Emilia Mia Sordillo, Harm van Bakel, The Personalized Virology Initiative, Jackson S. Turner, Goran Bajic, Viviana Simon, Ali H. Ellebedy, Florian Krammer

PII: S0092-8674(21)00706-6

DOI: https://doi.org/10.1016/j.cell.2021.06.005

Reference: CELL 12079

To appear in: Cell

Received Date: 9 March 2021

Revised Date: 14 May 2021

Accepted Date: 2 June 2021

Please cite this article as: Amanat, F., Thapa, M., Lei, T., Sayed Ahmed, S.M., Adelsberg, D.C., Carreno, J.M., Strohmeier, S., Schmitz, A.J., Zafar, S., Zhou, J.Q, Rijnink, W., Alshammary, H., Borcherding, N., Reiche, A.G., Srivastava, K., Sordillo, E.M., van Bakel, H., The Personalized Virology Initiative, Turner, J.S., Bajic, G., Simon, V., Ellebedy, A.H., Krammer, F., SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD and S2, *Cell* (2021), doi: https://doi.org/10.1016/j.cell.2021.06.005.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc.

1 SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD and S2

- 2
- 3 Fatima Amanat^{1,2}, Mahima Thapa³, Tinting Lei³, Shaza M. Sayed Ahmed³, Daniel C. Adelsberg¹, Juan
- 4 Manuel Carreno¹, Shirin Strohmeier¹, Aaron J. Schmitz³, Sarah Zafar¹, Julian Q Zhou⁴, Willemijn Rijnink¹,
- 5 Hala Alshammary¹, Nicholas Borcherding³, Ana Gonzalez Reiche⁵, Komal Srivastava, Emilia Mia Sordillo⁶,
- 6 Harm van Bakel^{5,7}, The Personalized Virology Initiative[#], Jackson S. Turner³, Goran Bajic¹, Viviana
- 7 Simon^{1,8,9}, Ali H. Ellebedy^{3,10,11}, Florian Krammer^{1,12}
- 8 Affiliations
- ⁹ ¹Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- ²Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029,
 USA
- ¹² ³Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO,
- 13 *63110, USA*
- 14 ⁴AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
- ⁵Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
 10029, USA
- ⁶Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai,
- 18 New York, NY 10029, USA
- ⁷Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai,
- 20 New York, NY 10029, USA
- ⁸Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New
- 22 York, NY 10029, USA
- ⁹The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New
- 24 York, NY 10029, USA
- 25 ¹⁰Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs,
- 26 Washington University School of Medicine, Saint Louis, MO 63110, USA
- 27 ¹¹Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine,
- 28 Saint Louis, MO 63110, USA
- 29 ¹²Lead Contact
- 30
- ³¹ [#]Personalized Virology Initiative (PVI) Study group/Consortium (in alphabetical order): Dr. Bulbul Ahmed,
- 32 Dr. Deena Altman, Angela Amoako, Mahmoud Awawda, Katherine Beach, Carolina Bermúdez-González,
- 33 Rachel Chernet, Lily Eaker, Shelcie Fabre, Emily. D. Ferreri, Daniel Floda, Charles Gleason, Dr. Giulio
- 34 Kleiner, Dr. Denise Jurczyszak, Julia Matthews, Wanni Mendez, Dr. Lubbertus CF Mulder, Jose Polanco,
- 35 Kayla Russo, Ashley Salimbangon, Dr. Miti Saksena, Amber S. Shin , Levy Sominsky, Sayahi Suthakaran,
- 36 Dr. Ania Wajnberg
- 37

38 Corresponding authors

- 39 Goran Bajic, goran.bajic@mssm.edu
- 40 Viviana Simon, viviana.simon@mssm.edu
- 41 Ali H. Ellebedy, ellebedy@wustl.edu
- 42 Florian Krammer, florian.krammer@mssm.edu

43 Summary

44 In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast derived mAbs 45 from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in 46 vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the 47 ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection 48 and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have 49 neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 50 spike and an original antigenic-sin like backboost to seasonal human coronaviruses OC43 and HKU1. 51 Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well 52 as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine induced RBD 53 binding antibodies may provide substantial protection against viral variants carrying single E484K RBD 54 mutations. 55

56	
57	
58	
59	
60	
61	
62	
63	
64	

65 Introduction

66 Understanding of the innate and adaptive immune responses to severe acute respiratory 67 syndrome coronavirus 2 (SARS-CoV-2) has progressed rapidly since the beginning of the coronavirus 68 disease 2019 (COVID-19) pandemic (Carvalho et al., 2021). Polyclonal antibody responses against the 69 spike protein of the virus in serum, and to a lesser degree also at mucosal surfaces, have been well 70 characterized with respect to their kinetics, binding capacity and functionality (Grandjean et al., 2020; 71 Isho et al., 2020; Iyer et al., 2020; Ripperger et al., 2020; Seow et al., 2020; Wajnberg et al., 2020). 72 Similarly, encouraging data have been published on both the plasmablast response and the memory B-73 cell response induced by SARS-CoV-2 infection (Dan et al., 2021; Gaebler et al., 2020; Guthmiller et al., 74 2021; Huang et al., 2021; Robbiani et al., 2020; Rodda et al., 2021; Wilson et al., 2020). The immune 75 responses to SARS-CoV-2 vaccination, including to mRNA-based vaccines, are less well studied since 76 these vaccines have only become available in the last months of 2020 (Baden et al., 2020; Polack et al., 77 2020). However, understanding vaccine-induced immunity is of high importance given the goal to 78 achieve immunity for most people through vaccination, rather than as a consequence of infection.

79 The receptor binding domain (RBD) of the SARS-CoV-2 spike is an important target for 80 serological and B-cell studies because it directly interacts with the cellular receptor angiotensin 81 converting enzyme 2 (ACE2) mediating host cell entry (Letko et al., 2020; Wrapp et al., 2020). Antibodies 82 binding to the RBD can potently block attachment of the virus to ACE2 and thereby neutralize the virus 83 (Barnes et al., 2020). As a consequence, RBD-based vaccines are in development in addition to full 84 length spike-based vaccines (Krammer, 2020). Analyses of the B-cell responses to the spike generally 85 focus on the RBD and on cells sorted with RBD baits introducing an inherent bias by omitting non-RBD 86 targets (Cao et al., 2020; Gaebler et al., 2020; Robbiani et al., 2020; Weisblum et al., 2020). This is also 87 true for B cells and monoclonal antibodies (mAbs) isolated from vaccinated individuals (Wang et al., 88 2021). However, other epitopes within the spike protein, notably the N-terminal domain (NTD) but also 89 S2, do harbor neutralizing epitopes (Chi et al., 2020; Liu et al., 2020; McCallum et al., 2021b; Song et al., 90 2020). In fact, the NTD is heavily mutated in the three most prominent variants of concern (VOCs, 91 B.1.1.7, B.1.351 and P.1 (Davies et al., 2021; Faria et al., 2021; Tegally et al., 2020)). Here, we studied the 92 unbiased plasmablast response to SARS-CoV-2 mRNA-based vaccination and report several new findings. 93 First, we document that RBD and NTD co-dominate as B-cell targets on the viral spike protein, 94 highlighting the importance of the NTD. We also report the first vaccine-induced NTD mAbs. In addition, 95 we show that the majority of mAbs isolated are non-neutralizing, which is reflective of the higher 96 binding to neutralization ratios found in serum after vaccination compared to natural infection. Finally, 97 data from plasmablasts suggest that, at least, some of the vaccine-induced response is biased by pre-98 existing immunity to human β -coronaviruses.

99

100 Results

The polyclonal antibody response to mRNA vaccination exceeds titers seen in convalescent individuals but is characterized by a high ratio of non-neutralizing antibodies

103 In late 2020, six adult participants of an ongoing observational study received mRNA-based 104 SARS-CoV-2 vaccines (Suppl. Table 1). Blood from these individuals (termed V1-V6) was collected at 105 several time points including before vaccination (for 4/6), after the first vaccination and at several time 106 points after the second vaccination. We examined their immune responses to recombinant spike protein 107 and RBD in enzyme-linked immunosorbent assays (ELISA), in comparison to those of 30 COVID-19 108 survivors (Figure 1A and 1B, Suppl. Table 1). The sera from convalescent individuals were selected 109 based on their anti-spike titers and grouped into three groups (low +: n=8; moderate ++: n=11; and high 110 +++: n=11, based on the antibody titer measured in the Mount Sinai's CLIA laboratory (Wajnberg et al., 111 2020), taken 111-273 days post symptom onset), in order to facilitate identifying different features that 112 may track with the strength of the antibody response. Five out of six vaccinees produced anti-spike and 113 anti-RBD responses that were, at the peak, markedly higher than responses observed even in the high 114 titer convalescent group while one vaccinee (V4) produced titers comparable to the high titer group. 115 Notably, the antibody response peaked one week after the second vaccine dose, followed by a decline 116 in titers over the following weeks as expected from an antibody response to vaccination. Interestingly, 117 anti-RBD antibody titers seemed to decline faster than anti-spike antibody titers, which appeared to be 118 more stable over time. We also measured neutralizing antibody titers using authentic SARS-CoV-2 and 119 found a similar trend with all vaccinees displaying high titers, even though V4 responded with delayed 120 kinetics (Figure 1C). Importantly, although at the peak response, the vaccine group mounted 121 neutralization titers that fell in the upper range for the high convalescent group, they did not exceed 122 that group markedly. This finding prompted us to calculate the proportions of spike binding to neutralizing antibodies. For the convalescent group, we found that individuals with lower titers had a 123 124 higher proportion of binding to neutralizing antibodies than high responding convalescent individuals 125 (Figure 1D). When determined at the time of peak response, the vaccinees had the highest proportion 126 of binding to neutralizing antibody titers, indicating an immune response focused on non-neutralizing 127 antibodies or an induction of less potent neutralizing antibodies in general (or both). These proportions remained stable over time with the ratio of binding to neutralizing antibodies in vaccinated individuals 128 129 being significantly higher than those observed for any of the three convalescent groups (p = 0.0004, 130 0.0002 and 0.0041 for the three groups respectively; Suppl. Figure 1). We also investigated the spike 131 binding to RBD binding ratio and found no difference to convalescent individuals except a general trend 132 towards proportionally less RBD binding over time in the vaccinees (Suppl. Figure 1).

mRNA vaccination induces a modest but measurable immune response to seasonal β-coronavirus spike proteins

135 It has been reported that SARS-CoV-2 infection induces an original antigenic sin-type immune 136 response against human coronaviruses (hCoVs) to which the majority of the human population has pre-137 existing immunity (Aydillo et al., 2020; Song *et al.*, 2020). Here, we explored whether this phenomenon 138 is also induced by SARS-CoV-2 mRNA vaccination. Antibody titers in four vaccinees against spike protein 139 from α -coronaviruses 229E and NL63 were detectable at the pre-vaccination time point, but did not 140 increase substantially post-vaccination (**Figure 1E-F**; for V5 and V6 no pre-vaccination serum was 141 available). However, titers against the spike proteins of β -coronaviruses OC43 and HKU1 increased substantially in these four vaccinees after vaccination (Figure 1G-H). Thus, vaccination with mRNA SARS-

- 143 CoV-2 spike also boosts immune responses against seasonal β -coronavirus spike proteins in a manner
- 144 reminiscent of that reported for natural infection with SARS-CoV-2.

145 Plasmablast response to SARS-CoV-2 mRNA vaccination targets both the RBD and the NTD

146 In order to characterize the B-cell response to vaccination in an unbiased manner, plasmablasts 147 were single-cell sorted from blood specimens obtained from three individuals (V3, V5 and V6) one week after the booster immunization (Suppl. Figure 2). All mAbs were generated from single-cell sorted 148 149 plasmablasts and probed for binding to recombinant SARS-CoV-2 spike protein. Twenty-one (40 mAbs 150 were screened, with 28 being clonally unique, Suppl. Table 2) spike-reactive mAbs were isolated from 151 V3, six (82 screened, 20 unique) from V5 and fifteen (84 screened, 24 unique) from V6 (Figure 2A). Using 152 recombinant spike, RBD, NTD and S2 proteins, we mapped the domains to which these mAbs bind. 153 Interestingly, only a minority of these antibodies recognized RBD (24% for V3, 47% for V6 and no RBD 154 binders were identified for V5) (Figure 2B and 2E). A substantial number of the isolated mAbs bound to 155 NTD including 14% for V3, 33% for V5 and 33% for V6 (Figure 2C and 2E). These data indicate that RBD 156 and NTD are co-dominant in the context of mRNA-induced plasmablast response. The epitopes for the 157 majority of the remaining spike binding mAbs, 52% for V3, 50% for V5 and 20% for V6, mapped to S2 158 (Figure 2D and 2E). Only three mAbs were not accounted for in terms of binding target (two for V3 and 159 one for V5, Figure 2E).

160 The majority of isolated mAbs from SARS-CoV2 vaccinees are non-neutralizing

All antibodies were tested for neutralizing activity against the USA-WA1/2020 strain of SARS-CoV-2. Only a minority of the binding antibodies, even those targeting the RBD, showed neutralizing activity (**Figure 2F and 2G**). For V3, only one (an RBD binder) out of 21 mAbs (5%) displayed neutralizing activity (**Figure 2G**). For V5, a single NTD antibody neutralized authentic SARS-CoV-2 (17%) (**Figure 2G**). The highest frequency of neutralizing antibodies was found in V6 (34%) with one RBD neutralizer and four NTD neutralizers (**Figure 2G**). Interestingly, the highest neutralizing potency was found in mAb PVI.V5-6, an NTD binder followed by PVI.V6-4, an RBD binder.

168 We also tested all the antibodies for reactivity to the spike proteins of the four hCoVs 229E, 169 NL63, HKU1 and OC43. No antibody binding to the spike proteins of α -coronaviruses 229E and NL63 was 170 found but we identified five mAbs (including three from V3, one from V5 and one from V6) that bound, to varying degrees, to the spike of OC43, which, like SARS-CoV-2, is a β -coronavirus (Figure 2H). Three 171 172 mAbs showed strong binding (PVI.V3-8, PVI.V3-12 and PVI.V6-1), while PVI.V3-17 showed an 173 intermediate binding phenotype and PVI-V5-1 bound very weakly. Three of these mAbs also showed 174 binding to the spike of HKU1, another β -coronavirus. Of these, PVI.V6-1 showed only very weak binding 175 while PVI.3-8 and PVI.3-12 had low minimal binding concentrations (MBCs) indicating higher affinity 176 (Figure 2I).

177 The spike-reactive plasmablast response is dominated by IgG1+ cells and is comprised of a mixture of 178 cells with low and high levels of somatic hypermutation (SHM)

179 Single-cell RNA sequencing (scRNAseq) was performed on bulk sorted plasmablasts from the 180 three vaccinees (V3, V5, V6) to comprehensively examine the transcriptional profile, isotype distribution 181 and somatic hypermutation (SHM) of vaccine-induced plasmablasts. We analyzed 4,584, 3,523 and

4,461 single cells from subjects V3, V5, and V6, respectively. We first verified the identity of sequenced 182 183 cells as plasmablasts through the combined expression of B cell receptors (BCRs) (Figure 3A) and that of 184 the canonical transcription as well as other factors essential for plasma cell differentiation, such as 185 PRDM1, XBP1 and MZB1 (Figure 3B). To identify vaccine-responding B cell clones among the analyzed 186 plasmablasts, we used scRNAseq to also analyze gene expression and V(D)J libraries from the sorted 187 plasmablasts and clonally matched the BCR sequences to those from which spike-specific mAbs had 188 been made. Using this method, we recovered 332, 7 and 1,384 BCR sequences from the scRNAseq data 189 that are clonally related to the spike-binding mAbs derived from subjects V3, V5 and V6, respectively 190 (Figure 3C). It is important to note here that we were not able to recover clonally related sequences for 191 all of the mAbs that we cloned and expressed from each of the three vaccinees.

192 We next examined the isotype and IgG subclass distribution among the recovered sequences. 193 IgG1 was by far the most dominant isotype in the three vaccinees (Figure 3D). Finally, we assessed the 194 level of somatic hypermutation (SHM) among the mAbs-related sequences from the three subjects. We 195 used the SHM levels observed in human naïve B cells and seasonal influenza virus vaccination-induced 196 plasmablasts that were previously published for comparison (Turner et al., 2020). Spike-reactive 197 plasmablasts from V3 and V6 but not V5 had accumulated SHM at levels that are significantly greater 198 than those observed with naïve B cells (Figure 3E, left panel). Strikingly, the SHM among V6 199 plasmablasts was equivalent to those observed after seasonal influenza virus vaccination (Figure 3E, left 200 panel). We reasoned that the high level of SHM among spike-reactive plasmablasts may be derived from those targeting conserved epitopes that are shared with human β-coronaviruses. Indeed, we found that 201 202 the SHM level among clones that are related to cross-reactive mAbs was significantly higher than their 203 non-cross-reactive counterparts (Figure 3E, right panel).

204 Competition of RBD binding neutralizing mAbs with ACE2 and affinity of variant RBDs for human ACE2

205 Two mAbs were identified as neutralizing and binding to RBD. We wanted, therefore, to test if 206 they competed with ACE2 for RBD binding. Concentration-dependent competition was indeed observed 207 for both mAbs demonstrating that inhibition of ACE2 binding is the mechanism of action of the two mAbs (Figure 4). Since we prepared RBD proteins of viral variants of concern for analysis of antibody 208 209 binding (see below), we also wanted to assess the affinity of each variant RBD for human ACE2. Using 210 biolayer interferometry (BLI), we measured association and dissociation rates of the N501Y RBD mutant 211 (B.1.1.7 carries that mutation as its sole RBD mutation), Y453F, as found in mink isolates (Larsen et al., 212 2021), N439K, which is found in some European clades (Thomson et al., 2021), a combination of Y453F 213 and N439K, E484K (part of B.1.351 and P.1) as well as for the B.1.351 and the P.1 RBDs for a 214 recombinant version of human ACE2 (Figure 4A, 4B and 4D). Almost all of the single and double 215 mutations in RBD tested increased affinity to human ACE2. Specifically, N501Y and Y453F combined with 216 N439K increased affinity for human ACE2 by 5-fold (Figure 4D, Suppl. Figure 3). In contrast, E484K on its 217 own decreased affinity by 4-fold. Of note, the B.1.351 RBD affinity for ACE2 was comparable to that of the wild-type RBD. These data were confirmed using an ELISA-based method which showed the same 218 219 trends (Suppl. Figure 4).

Binding profiles of polyclonal serum and mAbs to RBDs carrying mutations found in viral variants of concern

Next, we assessed binding of sera from vaccinated individuals, COVID-19 survivors and mAbs derived from plasmablasts to variant RBDs. Our panel of RBDs includes published mAb escape mutants,

224 RBD mutants detected by the Mount Sinai Hospital's Pathogen Surveillance Program in patients seeking 225 care at the Mount Sinai Health System in NYC as well as mutations found in viral variants of interest and 226 variants of concern (Baum et al., 2020; Greaney et al., 2021b; Larsen et al., 2021; Thomson et al., 2021; 227 Weisblum et al., 2020). Serum from convalescent individuals showed strong fluctuations depending on 228 the viral variant (Figure 5A). In general, single mutants E406Q, E484K and F490K exerted the biggest 229 impact on binding. However, complete loss of binding was rare and 2-4-fold reduction in binding was 230 more common. Interestingly, almost all sera bound better to N501Y RBD (B.1.1.7) than to wild-type RBD 231 (average 129% compared to wild type). Conversely, the B.1.351 RBD caused, on average, a 39% 232 reduction in binding. The impact was slightly lower for the P.1 RBD (average 70% binding compared to 233 wild-type). For sera from the six vaccinated individuals, however, the highest reduction seen was only two-fold for E406Q, N440K, E484K and F490K (Figure 5B). Of note, the vaccinees' later samples (V1=d89, 234 V2=d102, V3=d47, V4=d48, V5=49 and V6=48) were assayed to allow for some affinity maturation. The 235 highest reduction observed for E484K, F484A, B.1.351 and P.1 were also approximately two-fold but this 236 237 did not apply to all six vaccinees. Some vaccinees maintained binding levels against these RBDs at levels 238 comparable to wild-type RBD.

RBD binding mAbs were also tested for binding to the same variants. In general, mAbs maintained binding levels within 2-fold of the binding seen with the wild-type RBD with some exceptions. In fact, for most mAbs, no impact on binding was observed (**Figure 5C**) with the exception of PVI.V3-9, which lost binding to the RBD carrying F486A. Although there was a negative impact on binding of several mAbs to the B.1.351 variant, binding was almost unaffected by the mutations in the P.1 variant RBD. Only one mAb, PVI.V6-4, showed a drop in binding to P.1.

Escape of an NTD and E484K mutant virus from polyclonal post-vaccination serum is negligible but NTD mutations significantly impact the neutralizing activity of NTD binding mAbs

247 Through the Mount Sinai Hospital's Pathogen Surveillance Program, we had access to the SARS-248 CoV-2 isolate PV14252 (Clade 20C, Pango lineage B.1) that featured two mutations (W64R, L141Y) and 249 one deletion (Δ 142-145) in the NTD as well as the E484K mutation in the RBD (**Figure 5D**). To determine the susceptibility of this virus variant to neutralization by post-vaccination serum, we performed 250 251 microneutralization assays. Wild-type SARS-CoV-2 and PV14252 were tested in parallel to ensure that 252 the assay setup for both viruses allowed comparison. We found a relatively minor impact when testing 253 polyclonal sera from vaccinees for neutralizing activity (Figure 5E). The activity of sera from V2, V5 and 254 V6 slightly increased while the activity for V1, V3 and V4 decreased. Next, we tested the seven 255 neutralizing mAbs that we isolated from plasmablasts. Consistent with their binding profiles in the 256 variant RBD ELISA, the two RBD mAbs neutralized both viruses with comparable efficiency (Figure 5F). In 257 fact, the activity of PVI.V3-9 increased slightly (Figure 5F). In stark contrast, all five anti-NTD antibodies 258 completely lost neutralizing activity against PV14252 due to mutations present in the NTD of this viral 259 isolate.

260 B.1.1.7 and B.1.351 partially escape from plasmablast derived neutralizing antibodies

We also tested the neutralizing activity of the two RBD and the five NTD antibodies against the variants of concern B.1.1.7 and B.1.351 (**Figure 5G**). Both variants contain deletions as well as mutations in the NTD. In addition, B.1.1.7 carries the N501Y RBD mutation and B.1.351 carries N417K, E484K and N501Y mutations in the RBD (**Figure 4 A and B**). The two RBD binding antibodies lost no (PVI.V6-4) or little (PVI.V3-9) neutralizing activity against B.1.1.7. However, PVI.V3-9 lost all activity against B.1.351 and the remaining neutralizing activity of PVI.V6-4 was low (but measurable). All but one (PVI.V6-11))
 NTD mAbs lost neutralizing activity against B.1.1.7 and all of them lost neutralizing activity against
 B.1.351 once more highlighting the importance of changes in the NTD on the antibody activity.

269

270 Discussion

271 Our knowledge of B-cell responses to SARS-CoV-2 mRNA vaccination remains incomplete. We 272 urgently need information about the nature of polyclonal vaccine-induced responses as well as 273 unbiased, in depth analyses of plasmablast responses. Our data provide important new insights into 274 these responses in comparison with immune responses to natural infection. Indeed, SARS-CoV-2 275 infection results in a very heterogeneous antibody response to the spike protein in terms of antibody 276 quantity. In contrast, mRNA vaccination appears to induce a high antibody response of relatively 277 homogenous titers. However, we also found that vaccinees generate more non-neutralizing antibodies 278 than COVID-19 survivors resulting in a lower ratio of neutralizing to binding antibodies. These data were 279 already apparent in the early phase clinical trials but remained unrecognized at the time (Walsh et al., 280 2020). Interestingly, low titer convalescent serum had the highest relative amount of neutralizing 281 antibodies, whereas the proportion of binding antibodies was increased in sera with higher measured antibody titers. The majority of plasmablasts sampled after vaccination do, in fact, produce non-282 283 neutralizing antibodies. Two recent studies have performed a similarly unbiased plasmablast analysis for 284 individuals naturally infected with SARS-CoV-2 (Cho et al., 2021; Huang et al., 2021). Of course, the 285 antibody response after SARS-CoV-2 infection is not only targeting the spike protein but several other 286 proteins expressed by the virus. When accounting for spike binding only, these studies report 287 proportions of 44% and 25% neutralizing antibodies (Cho et al., 2021; Huang et al., 2021). While 288 plasmablast analysis is in general not quantitative (e.g. one clone per clonotype is selected etc.) our 289 analysis of post-vaccination plasmablasts found a lower number of neutralizing antibodies (17%).

Future studies are needed to reveal the role of non-neutralizing antibodies in SARS-CoV-2 immune protection. Indeed, antibody functions other than neutralization have been shown to correlate with protection (Bartsch et al., 2021; Gorman et al., 2021; Schäfer et al., 2021). The importance of absolute antibody titers and not ratios is underscored by the fact that post-vaccination neutralization titers were equal to or exceeded the titers found in the high responder convalescent group.

295 Of the four seasonal CoVs that are widely circulating in humans, β -coronaviruses OC43 and HKU1 have 296 higher homology to SARS-CoV-2 spike. Vaccinated individuals mounted a response to spike proteins from OC43 and HKU1 but not to α -coronaviruses 229E and NL63. This phenomenon resembles the 297 298 immune imprinting described in influenza virus immunology and has already been shown for natural 299 infection with SARS-CoV-2 where a 'backboost' to β -coronaviruses was also found (Aydillo *et al.*, 2020; 300 Song *et al.*, 2020). A few of the mAbs isolated in our study had, indeed, such a cross-reactive phenotype. 301 It remains unclear whether these antibodies, which target mostly S2 epitopes, contribute to protection 302 against SARS-CoV-2, OC43 or HKU1 infection. However, the cross-reactive epitopes of mAbs that do bind 303 SARS-CoV-2, HKU1 and OC43 spikes could provide the basis for future pan-β-coronavirus vaccines. While 304 it is likely the case that the B-cells producing these mAbs come from recall responses and were initially 305 induced by human β -coronaviruses (which is supported by serology and of course the extensive SHM 306 that the mAbs show), they could hypothetically also be *de novo* induced antibodies. While this is 307 probably not the case, we cannot exclude this possibility with our current data.

308

Another interesting point we noted is the co-dominance of RBD and NTD. Previous analyses of 309 310 B-cell responses to SARS-CoV-2 mRNA vaccination focused on cells baited by labeled RBD (Wang et al., 311 2021). We, in contrast, took an unbiased approach to sort and clone plasmablasts in an antigen-agnostic 312 manner. We found similar levels of NTD and RBD binders with many mAbs binding to epitopes outside 313 the RBD and the NTD. In one vaccinee not a single RBD binding mAbs was isolated with the caveats that 314 the overall number of mAbs derived from that individual were low and their polyclonal serum antibody 315 responses included RBD recognition. These data suggest that the NTD, which also harbors neutralizing 316 epitopes, is - at least - as important as the RBD and warrants as much attention. In fact, five out of seven 317 neutralizing antibodies isolated in this study bound to the NTD and only two targeted the RBD. Recent 318 studies analyzing the plasmablast response after natural infection have found a similar co-dominance of 319 RBD and NTD (Cho et al., 2021; Huang et al., 2021) with one study reporting 59 mAbs targeting the RBD, 320 64 targeting the NTD and 46 binding outside of RBD and NTD and the second study finding 10 RBD 321 mAbs, 13 non-RBD S1 binding mAbs (strongly suggesting NTD binding) and 9 mAbs targeting S2. 322 Interestingly, and in contrast to our findings, a recent deep mutational scanning paper with sera from 323 mRNA-1273 found a very strong RBD-focused response (Greaney et al., 2021a). Further characterization 324 of the mAbs obtained in our study showed a complete loss of neutralization against an authentic, 325 replication-competent variant virus that harbored extensive changes in the NTD. All NTD mAbs also lost 326 neutralizing activity against B.1.351 and all but one lost activity against B.1.1.7. These observations may 327 explain why a reduction in neutralization against the viral variant of concern B.1.1.7 is seen in some 328 studies despite the fact the N501Y substitution in the RBD of this variant does not significantly impact 329 binding and neutralizing activity (Emary et al., 2021). The key role of NTD as target for antibodies has 330 recently also been shown using memory B cell derived mAbs (McCallum et al., 2021a).

331 In addition, we assessed the impact of different RBD mutations on affinity towards human ACE2. Interestingly, N501Y increased the affinity by five-fold. This increase in receptor binding affinity may 332 333 contribute to the higher infectivity of B.1.1.7, which carries this mutation in its RBD. In contrast, 334 introduction of E484K reduced the affinity by 4-fold which may explain why virus variants carrying only 335 the E484K mutation have rarely spread efficiently, although viruses carrying E484K have been detected 336 since the fall of 2020 in a handful of patients receiving care at the Mount Sinai Health System and have 337 also been reported in immunocompromised patients (Choi et al., 2020). It is tempting to speculate that 338 the N501Y mutation enables the acquisition of E484K without a fitness loss. In fact, the B.1.351 RBD, 339 which carries N501Y and E484K (as well as N417K) showed binding to hACE2 that was similar to wild-340 type RBD. Recently, B.1.1.7 variant strains carrying E484K, in addition to N501Y, have been isolated in 341 the UK (PHE, 2021), providing evidence for the hypothesis that N501Y enables acquisition of mutations 342 in the RBD that may be detrimental to receptor binding. However, recent expansion of B.1.526, a 343 lineage also featuring E484K but without N501Y in New York City, suggests that this fitness loss may be 344 overcome by other, yet uncharacterized, changes in the virus as well (Annavajhala et al., 2021; Lasek-345 Nesselquist et al., 2021). Interestingly, binding of convalescent sera to the N501Y RBD was also 346 increased, suggesting that changes that increase affinity for the receptor may also increase affinity of a 347 set of antibodies that may mimic the receptor.

We also noted that the two neutralizing antibodies against the RBD showed some reduced binding to a mutant RBD carrying the E484K mutation while having similar or even increased neutralizing potency against a variant virus carrying the E484K mutation as the only change in its RBD. The reduced affinity of the E484K variant RBD for hACE2 could render the virus more susceptible to RBD binding mAbs. Thus, an antibody binding to the RBD may just be more effective in interfering with a low affinity as compared to a high affinity RBD-hACE2 interaction. Increased affinity as an escape mechanism for viruses has been described in the past (Hensley et al., 2009; O'Donnell et al., 2012) and the converse mechanism could be at play here.

356 Whether or not the current vaccines will provide effective protection against circulating and 357 emerging viral variants of concern is an important question which has gathered a lot of attention in early 358 2021. Our data indicate that reduction in binding to the E484K and B.1.351 variant RBDs was minor (often only 2-fold) compared to reported reduction in neutralization (which ranges from 6-8 fold to 359 360 complete loss of neutralization (Cele et al., 2021; Wibmer et al., 2021; Wu et al., 2021)). Although not 361 tested here, it is likely that the reduction in binding to full length spike is even lower, given the many 362 epitopes on the spike other than NTD and RBD. The maintenance of binding to a large degree observed 363 in this study suggests that viral variants will have a minor impact on serological assays which are 364 currently in wide use for medical, scientific and public health reasons. Binding, non-neutralizing 365 antibodies have also been shown to have a protective effect in many viral infections (Asthagiri 366 Arunkumar et al., 2019; Dilillo et al., 2014; Saphire et al., 2018) and may be a factor in the substantial 367 residual protection seen in the Johnson & Johnson and Novavax vaccine trials against B.1.351 in South 368 Africa (Shinde et al., 2021). Production of non-neutralizing antibodies may also play a role in protection 369 by mRNA vaccines after the first dose, as it is substantial and occurs during a time when neutralizing 370 antibody titers are either very low or absent (Baden et al., 2020; Dagan et al., 2021; Polack et al., 2020). 371 Finally, although some antibodies may lose neutralizing activity due to reduced affinity, they do still 372 bind. Furthermore, B cells with these specificities potentially could undergo affinity maturation after 373 exposure to a variant virus or a variant spike-containing vaccine, leading to high affinity antibodies to 374 variant viruses of concern.

In summary, we demonstrate that the antibody responses to SARS-CoV-2 mRNA vaccination comprise a
large proportion of non-neutralizing antibodies and are co-dominated by NTD and RBD antibodies. The
NTD portion of the spike represents, thus, an important vaccine target. Since all viral variants of concern
are heavily mutated in this region, these observations warrant further attention to optimize SARS-CoV-2
vaccines. Finally, broadly cross-reactive mAbs to β-coronavirus spike proteins are induced after
vaccination, and suggest a potential development path for a pan- β-coronavirus vaccine.

381 Limitations of the Study

382 While our study characterizes the antibody response after SARS-CoV-2 mRNA vaccination in detail, it has 383 several limitations. The first limitation is the small number of study participants, which makes this study a qualitative rather than a quantitative study. Another limitation is the lack of plasmablast analysis of 384 385 SARS-CoV-2 infected individuals. We have compared our data with published data from plasmablast 386 analysis after SARS-CoV-2 infection but a side-by-side comparison would have been more accurate. We 387 have also not included a longitudinal analysis of the convalescent sera iin the study but feel that providing a wide range of time points and titer levels offsets this limitation to a certain degree. In 388 389 addition, while the clones of crossreactive plasmablasts are likely derived from the memory 390 compartment and have likely been initially induced by seasonal coronavirus infections, we lack the 391 ultimate proof for that since we did not analyze pre-vaccination memory B cells and B cell receptor

sequences. Finally, the burning question if the abundant non-neutralizing antibodies do have a
 protective effect *in vivo* will need to be elucidated by follow up studies.

394

395

396 Acknowledgements

397 We would like to thank the study participants for their generosity and willingness to participate in 398 longitudinal COVID19 research studies. None of this work would be possible without their contributions. 399 We would like to thank Dr. Randy A. Albrecht for oversight of the conventional BSL3 biocontainment 400 facility, which makes our work with live SARS-CoV-2 possible. We are also grateful for Mount Sinai's 401 leadership during the COVID-19 pandemic. We want to especially thank Drs. Peter Palese, Carlos 402 Cordon-Cardo, Dennis Charney, David Reich and Kenneth Davis for their support. We would also like to 403 thank Bassem Mohamed and Wooseob Kim for their help with preparing the scRNAseq libraries. This 404 work was partially funded by the NIAID Collaborative Influenza Vaccine Innovation Centers (CIVIC) 405 contract 75N93019C00051, NIAID Center of Excellence for Influenza Research and Surveillance (CEIRS, 406 contract # HHSN272201400008C and HHSN272201400006C), NIAID grants U01AI141990 and 407 U01AI150747, by the generous support of the JPB Foundation and the Open Philanthropy Project 408 (research grant 2020-215611 (5384); and by anonymous donors. J.S.T. was supported by NIAID 409 5T32CA009547.

410

411 Conflict of interest statement

The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 412 413 serological assays and NDV-based SARS-CoV-2 vaccines which list Florian Krammer as co-inventor. Viviana Simon is also listed on the serological assay patent application as co-inventors. Mount Sinai has 414 415 spun out a company, Kantaro, to market serological tests for SARS-CoV-2. Florian Krammer has 416 consulted for Merck and Pfizer (before 2020), and is currently consulting for Pfizer, Seqirus and Avimex. 417 The Krammer laboratory is also collaborating with Pfizer on animal models of SARS-CoV-2. Ali Ellebedy 418 has consulted for InBios and Fimbrion Therapeutics (before 2021) and is currently a consultant for 419 Mubadala Investment Company. The Ellebedy laboratory received funding under sponsored research 420 agreements that are unrelated to the data presented in the current study from Emergent BioSolutions 421 and from AbbVie.

422

423 Author contributions

FA, GB, VS, AHE and FK developed the concept. HA, KS, PVI and VS recruited patients and performed
clinical coordination. MT, TL, SMSA, AJS, NB and JST performed the antibody isolation. JQZ and AHE
performed the B-cell sequence analysis. AGR, HvB and EMS acquired samples and sequenced viruses.
FA, JMC, SS, SZ and WR characterized sera and mAbs and created reagents. DCA measured affinities. FA,
GB, VS, AHE and FK analyzed the data. GB, VS, AHE and FK created the figures. FK wrote the manuscript.
FA, GB, VS and AHE edited the manuscript. All authors read, subedited and approved the manuscript.

- 430
- 431

432 References

- 433 Amanat, F., Duehr, J., Huang, C., Paessler, S., Tan, G.S., and Krammer, F. (2020a). Monoclonal Antibodies
- with Neutralizing Activity and Fc-Effector Functions against the Machupo Virus Glycoprotein. J Virol *94*.
 10.1128/JVI.01741-19.
- 436 Amanat, F., Duehr, J., Oestereich, L., Hastie, K.M., Ollmann Saphire, E., and Krammer, F. (2018).
- 437 Antibodies to the Glycoprotein GP2 Subunit Cross-React between Old and New World Arenaviruses.
- 438 mSphere *3*. 10.1128/mSphere.00189-18.
- 439 Amanat, F., Stadlbauer, D., Strohmeier, S., Nguyen, T.H.O., Chromikova, V., McMahon, M., Jiang, K.,
- 440 Arunkumar, G.A., Jurczyszak, D., Polanco, J., et al. (2020b). A serological assay to detect SARS-CoV-2
- 441 seroconversion in humans. Nat Med *26*, 1033-1036. 10.1038/s41591-020-0913-5.
- 442 Amanat, F., White, K.M., Miorin, L., Strohmeier, S., McMahon, M., Meade, P., Liu, W.C., Albrecht, R.A.,
- 443 Simon, V., Martinez-Sobrido, L., et al. (2020c). An In Vitro Microneutralization Assay for SARS-CoV-2
- 444 Serology and Drug Screening. Curr Protoc Microbiol *58*, e108. 10.1002/cpmc.108.
- 445 Annavajhala, M.K., Mohri, H., Zucker, J.E., Sheng, Z., Wang, P., Gomez-Simmonds, A., Ho, D.D., and
- 446 Uhlemann, A.C. (2021). A Novel SARS-CoV-2 Variant of Concern, B.1.526, Identified in New York.
- 447 medRxiv. 10.1101/2021.02.23.21252259.
- 448 Asthagiri Arunkumar, G., Ioannou, A., Wohlbold, T.J., Meade, P., Aslam, S., Amanat, F., Ayllon, J., García-
- 449 Sastre, A., and Krammer, F. (2019). Broadly Cross-Reactive, Nonneutralizing Antibodies against Influenza
- B Virus Hemagglutinin Demonstrate Effector Function-Dependent Protection against Lethal Viral
 Challenge in Mice. J Virol *93*. 10.1128/JVI.01696-18.
- 452 Aydillo, T., Rombauts, A., Stadlbauer, D., Aslam, S., Abelenda-Alonso, G., Escalera, A., Amanat, F., Jiang,
- 453 K., Krammer, F., Carratala, J., and García-Sastre, A. (2020). Antibody Immunological Imprinting on
- 454 COVID-19 Patients. medRxiv, 2020.2010.2014.20212662. 10.1101/2020.10.14.20212662.
- 455 Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A., Rouphael,
- N., Creech, C.B., et al. (2020). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med.
 10.1056/NEJMoa2035389.
- 458 Bailey, M.J., Broecker, F., Duehr, J., Arumemi, F., Krammer, F., Palese, P., and Tan, G.S. (2019).
- 459 Antibodies Elicited by an NS1-Based Vaccine Protect Mice against Zika Virus. mBio 10.
- 460 10.1128/mBio.02861-18.
- 461 Barnes, C.O., West, A.P., Huey-Tubman, K.E., Hoffmann, M.A.G., Sharaf, N.G., Hoffman, P.R., Koranda,
- 462 N., Gristick, H.B., Gaebler, C., Muecksch, F., et al. (2020). Structures of Human Antibodies Bound to
- 463 SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell *182*, 828-
- 464 842.e816. 10.1016/j.cell.2020.06.025.
- 465 Bartsch, Y.C., Fischinger, S., Siddiqui, S.M., Chen, Z., Yu, J., Gebre, M., Atyeo, C., Gorman, M.J., Zhu, A.L.,
- 466 Kang, J., et al. (2021). Discrete SARS-CoV-2 antibody titers track with functional humoral stability. Nat
- 467 Commun *12*, 1018. 10.1038/s41467-021-21336-8.
- 468 Baum, A., Fulton, B.O., Wloga, E., Copin, R., Pascal, K.E., Russo, V., Giordano, S., Lanza, K., Negron, N., Ni,
- 469 M., et al. (2020). Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen
- 470 with individual antibodies. Science *369*, 1014-1018. 10.1126/science.abd0831.
- Borcherding, N., Bormann, N.L., and Kraus, G. (2020). scRepertoire: An R-based toolkit for single-cell
 immune receptor analysis. F1000Res *9*, 47. 10.12688/f1000research.22139.2.
- 473 Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C., et al. (2020).
- 474 Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing
- 475 of Convalescent Patients' B Cells. Cell *182*, 73-84.e16. 10.1016/j.cell.2020.05.025.
- 476 Carvalho, T., Krammer, F., and Iwasaki, A. (2021). The first 12 months of COVID-19: a timeline of
- 477 immunological insights. Nat Rev Immunol *21*, 245-256. 10.1038/s41577-021-00522-1.

- 478 Cele, S., Gazy, I., Jackson, L., Hwa, S.-H., Tegally, H., Lustig, G., Giandhari, J., Pillay, S., Wilkinson, E.,
- 479 Naidoo, Y., et al. (2021). Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent
 480 plasma. medRxiv, 2021.2001.2026.21250224. 10.1101/2021.01.26.21250224.
- 481 Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., Zhang, Z., Fan, P., Dong, Y., Yang, Y., et al. (2020).
- 482 A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2.
- 483 Science *369*, 650-655. 10.1126/science.abc6952.
- 484 Cho, H., Gonzales-Wartz, K.K., Huang, D., Yuan, M., Peterson, M., Liang, J., Beutler, N., Torres, J.L., Cong,
- 485 Y., Postnikova, E., et al. (2021). Ultrapotent bispecific antibodies neutralize emerging SARS-CoV-2
- 486 variants. bioRxiv, 2021.2004.2001.437942. 10.1101/2021.04.01.437942.
- 487 Choi, B., Choudhary, M.C., Regan, J., Sparks, J.A., Padera, R.F., Qiu, X., Solomon, I.H., Kuo, H.H., Boucau,
- J., Bowman, K., et al. (2020). Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host.
 N Engl J Med *383*, 2291-2293. 10.1056/NEJMc2031364.
- 490 Dagan, N., Barda, N., Kepten, E., Miron, O., Perchik, S., Katz, M.A., Hernán, M.A., Lipsitch, M., Reis, B.,
- and Balicer, R.D. (2021). BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N
- 492 Engl J Med. 10.1056/NEJMoa2101765.
- 493 Dan, J.M., Mateus, J., Kato, Y., Hastie, K.M., Yu, E.D., Faliti, C.E., Grifoni, A., Ramirez, S.I., Haupt, S.,
- 494 Frazier, A., et al. (2021). Immunological memory to SARS-CoV-2 assessed for up to 8 months after
 495 infection. Science *371*. 10.1126/science.abf4063.
- 496 Davies, N.G., Abbott, S., Barnard, R.C., Jarvis, C.I., Kucharski, A.J., Munday, J.D., Pearson, C.A.B., Russell,
- 497 T.W., Tully, D.C., Washburne, A.D., et al. (2021). Estimated transmissibility and impact of SARS-CoV-2
- 498 lineage B.1.1.7 in England. Science, eabg3055. 10.1126/science.abg3055.
- 499 Dilillo, D.J., Tan, G.S., Palese, P., and Ravetch, J.V. (2014). Broadly neutralizing hemagglutinin stalk-
- specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat Med.
 10.1038/nm.3443.
- 502 Emary, K.R.W., Golubchik, T., Aley, P.K., Ariani, C.V., Angus, B., Bibi, S., Blane, B., Bonsall, D., Cicconi, P.,
- 503 Charlton, S., et al. (2021). Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of
- 504 concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet *397*, 1351-
- 505 1362. 10.1016/S0140-6736(21)00628-0.
- 506 Faria, N.R., Claro, I.M., Candido, D., Franco, L.A.M., Andrade, P.S., Coletti, T.M., Silva, C.A.M., Sales, F.C.,
- 507 Manula, E.R., Aguiar, R.S., et al. (2021). <h1 data-topic-id="586" style="font-size: 1.7511em; margin: 0px
- 508 Opx 4px; font-family: Helvetica, Arial, sans-serif; width: 999px; line-height: 1.2; overflow-wrap: break-
- word; color: rgb(34, 34, 34); background-color: rgb(255, 255, 255);">Genomic characterisation of an
 emergent SARS-CoV-2 lineage in Manaus: preliminary findings.
- 511 Gaebler, C., Wang, Z., Lorenzi, J.C.C., Muecksch, F., Finkin, S., Tokuyama, M., Ladinsky, M., Cho, A.,
- 512 Jankovic, M., Schaefer-Babajew, D., et al. (2020). Evolution of Antibody Immunity to SARS-CoV-2.
- 513 bioRxiv. 10.1101/2020.11.03.367391.
- 514 Giudicelli, V., Chaume, D., and Lefranc, M.P. (2005). IMGT/GENE-DB: a comprehensive database for
- human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res *33*, D256-261.
- 516 10.1093/nar/gki010.
- 517 Gonzalez-Reiche, A.S., Hernandez, M.M., Sullivan, M.J., Ciferri, B., Alshammary, H., Obla, A., Fabre, S.,
- 518 Kleiner, G., Polanco, J., Khan, Z., et al. (2020). Introductions and early spread of SARS-CoV-2 in the New 519 York City area. Science. 10.1126/science.abc1917.
- 520 Gorman, M.J., Patel, N., Guebre-Xabier, M., Zhu, A., Atyeo, C., Pullen, K.M., Loos, C., Goez-Gazi, Y.,
- 521 Carrion, R., Tian, J.-H., et al. (2021). Collaboration between the Fab and Fc contribute to maximal
- 522 protection against SARS-CoV-2 in nonhuman primates following NVX-CoV2373 subunit vaccine with
- 523 Matrix-M[™] vaccination. bioRxiv, 2021.2002.2005.429759. 10.1101/2021.02.05.429759.

- 524 Grandjean, L., Saso, A., Torres, A., Lam, T., Hatcher, J., Thistlethwayte, R., Harris, M., Best, T., Johnson,
- 525 M., Wagstaffe, H., et al. (2020). Humoral Response Dynamics Following Infection with SARS-CoV-2.
- 526 medRxiv, 2020.2007.2016.20155663. 10.1101/2020.07.16.20155663.
- 527 Greaney, A.J., Loes, A.N., Gentles, L.E., Crawford, K.H.D., Starr, T.N., Malone, K.D., Chu, H.Y., and Bloom,
- 528 J.D. (2021a). The SARS-CoV-2 mRNA-1273 vaccine elicits more RBD-focused neutralization, but with
- 529 broader antibody binding within the RBD. bioRxiv, 2021.2004.2014.439844.
- 530 10.1101/2021.04.14.439844.
- 531 Greaney, A.J., Starr, T.N., Gilchuk, P., Zost, S.J., Binshtein, E., Loes, A.N., Hilton, S.K., Huddleston, J.,
- 532 Eguia, R., Crawford, K.H.D., et al. (2021b). Complete Mapping of Mutations to the SARS-CoV-2 Spike
- Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29, 44-57.e49.
 10.1016/j.chom.2020.11.007.
- 535 Gupta, N.T., Vander Heiden, J.A., Uduman, M., Gadala-Maria, D., Yaari, G., and Kleinstein, S.H. (2015).
- 536 Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data.
- 537 Bioinformatics *31*, 3356-3358. 10.1093/bioinformatics/btv359.
- 538 Guthmiller, J.J., Stovicek, O., Wang, J., Changrob, S., Li, L., Halfmann, P., Zheng, N.Y., Utset, H., Stamper,
- 539 C.T., Dugan, H.L., et al. (2021). SARS-CoV-2 Infection Severity Is Linked to Superior Humoral Immunity
- 540 against the Spike. mBio 12. 10.1128/mBio.02940-20.
- 541 Hensley, S.E., Das, S.R., Bailey, A.L., Schmidt, L.M., Hickman, H.D., Jayaraman, A., Viswanathan, K.,
- 542 Raman, R., Sasisekharan, R., Bennink, J.R., and Yewdell, J.W. (2009). Hemagglutinin receptor binding
- 543 avidity drives influenza A virus antigenic drift. Science *326*, 734-736. 10.1126/science.1178258.
- 544 Huang, K.A., Tan, T.K., Chen, T.H., Huang, C.G., Harvey, R., Hussain, S., Chen, C.P., Harding, A., Gilbert-
- Jaramillo, J., Liu, X., et al. (2021). Breadth and function of antibody response to acute SARS-CoV-2
- infection in humans. PLoS Pathog 17, e1009352. 10.1371/journal.ppat.1009352.
- 547 Isho, B., Abe, K.T., Zuo, M., Jamal, A.J., Rathod, B., Wang, J.H., Li, Z., Chao, G., Rojas, O.L., Bang, Y.M., et
- al. (2020). Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19
 patients. Sci Immunol 5. 10.1126/sciimmunol.abe5511.
- 550 Iyer, A.S., Jones, F.K., Nodoushani, A., Kelly, M., Becker, M., Slater, D., Mills, R., Teng, E., Kamruzzaman,
- 551 M., Garcia-Beltran, W.F., et al. (2020). Dynamics and significance of the antibody response to SARS-CoV-
- 552 2 infection. medRxiv. 10.1101/2020.07.18.20155374.
- 553 Krammer, F. (2020). SARS-CoV-2 vaccines in development. Nature *586*, 516-527. 10.1038/s41586-020-554 2798-3.
- Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., and Wang, X.
- (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature
 581, 215-220. 10.1038/s41586-020-2180-5.
- Larsen, H.D., Fonager, J., Lomholt, F.K., Dalby, T., Benedetti, G., Kristensen, B., Urth, T.R., Rasmussen, M.,
- Lassaunière, R., Rasmussen, T.B., et al. (2021). Preliminary report of an outbreak of SARS-CoV-2 in mink
- and mink farmers associated with community spread, Denmark, June to November 2020. Euro Surveill
- 561 *26*. 10.2807/1560-7917.ES.2021.26.5.210009.
- Lasek-Nesselquist, E., Lapierre, P., Schneider, E., George, K.S., and Pata, J. (2021). The localized rise of a
- 563 B.1.526 SARS-CoV-2 variant containing an E484K mutation in New York State. medRxiv,
- 564
 2021.2002.2026.21251868.
 10.1101/2021.02.26.21251868.
- Letko, M., Marzi, A., and Munster, V. (2020). Functional assessment of cell entry and receptor usage for
- 566 SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol *5*, 562-569. 10.1038/s41564-020-567 0688-y.
- Liu, L., Wang, P., Nair, M.S., Yu, J., Rapp, M., Wang, Q., Luo, Y., Chan, J.F., Sahi, V., Figueroa, A., et al.
- 569 (2020). Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450-
- 570 456. 10.1038/s41586-020-2571-7.

- 571 Margine, I., Palese, P., and Krammer, F. (2013). Expression of functional recombinant hemagglutinin and
- 572 neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system. J
 573 Vis Exp, e51112. 10.3791/51112.
- 574 McCallum, M., De Marco, A., Lempp, F.A., Tortorici, M.A., Pinto, D., Walls, A.C., Beltramello, M., Chen,
- A., Liu, Z., Zatta, F., et al. (2021a). N-terminal domain antigenic mapping reveals a site of vulnerability for
 SARS-CoV-2. Cell. 10.1016/j.cell.2021.03.028.
- 577 McCallum, M., Marco, A., Lempp, F., Tortorici, M.A., Pinto, D., Walls, A.C., Beltramello, M., Chen, A., Liu,
- 578 Z., Zatta, F., et al. (2021b). N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-
- 579 CoV-2. bioRxiv. 10.1101/2021.01.14.426475.
- 580 Nachbagauer, R., Shore, D., Yang, H., Johnson, S.K., Gabbard, J.D., Tompkins, S.M., Wrammert, J.,
- 581 Wilson, P.C., Stevens, J., Ahmed, R., et al. (2018). Broadly Reactive Human Monoclonal Antibodies
- Elicited following Pandemic H1N1 Influenza Virus Exposure Protect Mice against Highly Pathogenic H5N1
 Challenge. J Virol *92*. 10.1128/JVI.00949-18.
- 584 O'Donnell, C.D., Vogel, L., Wright, A., Das, S.R., Wrammert, J., Li, G.M., McCausland, M., Zheng, N.Y.,
- 585 Yewdell, J.W., Ahmed, R., et al. (2012). Antibody pressure by a human monoclonal antibody targeting
- the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice. mBio 2, 10, 1128 (mBio, 00120, 12)
- 587 in mice. mBio *3*. 10.1128/mBio.00120-12.
- 588 Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Becker,
- 589 M.M., Wang, L., Shi, W., et al. (2017). Immunogenicity and structures of a rationally designed prefusion
- 590 MERS-CoV spike antigen. Proc Natl Acad Sci U S A *114*, E7348-E7357. 10.1073/pnas.1707304114.
- 591 PHE (2021). Investigation of novel SARS-CoV-2 variant Variant of Concern 202012/01 Technical briefing
 592 5.
- 593 Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Pérez Marc, G.,
- Moreira, E.D., Zerbini, C., et al. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N
 Engl J Med. 10.1056/NEJMoa2034577.
- 596 Ripperger, T.J., Uhrlaub, J.L., Watanabe, M., Wong, R., Castaneda, Y., Pizzato, H.A., Thompson, M.R.,
- 597 Bradshaw, C., Weinkauf, C.C., Bime, C., et al. (2020). Orthogonal SARS-CoV-2 Serological Assays Enable
- 598 Surveillance of Low-Prevalence Communities and Reveal Durable Humoral Immunity. Immunity *53*, 925-
- 599 933.e924. 10.1016/j.immuni.2020.10.004.
- 600 Robbiani, D.F., Gaebler, C., Muecksch, F., Lorenzi, J.C.C., Wang, Z., Cho, A., Agudelo, M., Barnes, C.O.,
- Gazumyan, A., Finkin, S., et al. (2020). Convergent antibody responses to SARS-CoV-2 in convalescent
 individuals. Nature *584*, 437-442. 10.1038/s41586-020-2456-9.
- Rodda, L.B., Netland, J., Shehata, L., Pruner, K.B., Morawski, P.A., Thouvenel, C.D., Takehara, K.K.,
- 604 Eggenberger, J., Hemann, E.A., Waterman, H.R., et al. (2021). Functional SARS-CoV-2-Specific Immune
- 605 Memory Persists after Mild COVID-19. Cell *184*, 169-183.e117. 10.1016/j.cell.2020.11.029.
- 606 Saphire, E.O., Schendel, S.L., Fusco, M.L., Gangavarapu, K., Gunn, B.M., Wec, A.Z., Halfmann, P.J.,
- 607 Brannan, J.M., Herbert, A.S., Qiu, X., et al. (2018). Systematic Analysis of Monoclonal Antibodies against
- 608 Ebola Virus GP Defines Features that Contribute to Protection. Cell *174*, 938-952.e913.
- 609 10.1016/j.cell.2018.07.033.
- 610 Schäfer, A., Muecksch, F., Lorenzi, J.C.C., Leist, S.R., Cipolla, M., Bournazos, S., Schmidt, F., Maison, R.M.,
- 611 Gazumyan, A., Martinez, D.R., et al. (2021). Antibody potency, effector function, and combinations in
- 612 protection and therapy for SARS-CoV-2 infection in vivo. J Exp Med 218. 10.1084/jem.20201993.
- 613 Seow, J., Graham, C., Merrick, B., Acors, S., Pickering, S., Steel, K.J.A., Hemmings, O., O'Byrne, A.,
- Kouphou, N., Galao, R.P., et al. (2020). Longitudinal observation and decline of neutralizing antibody
- responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol *5*, 1598-1607.
- 616 10.1038/s41564-020-00813-8.

- 617 Shinde, V., Bhikha, S., Hossain, Z., Archary, M., Bhorat, Q., Fairlie, L., Lalloo, U., Masilela, M.L.S.,
- Moodley, D., Hanley, S., et al. (2021). Preliminary Efficacy of the NVX-CoV2373 Covid-19 Vaccine Against
 the B.1.351 Variant. medRxiv, 2021.2002.2025.21252477. 10.1101/2021.02.25.21252477.
- 620 Smith, K., Garman, L., Wrammert, J., Zheng, N.Y., Capra, J.D., Ahmed, R., and Wilson, P.C. (2009). Rapid
- 621 generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4, 372-
- 622 384. 10.1038/nprot.2009.3.
- 623 Song, G., He, W.T., Callaghan, S., Anzanello, F., Huang, D., Ricketts, J., Torres, J.L., Beutler, N., Peng, L.,
- Vargas, S., et al. (2020). Cross-reactive serum and memory B cell responses to spike protein in SARS-CoV-
- 625 2 and endemic coronavirus infection. bioRxiv. 10.1101/2020.09.22.308965.
- 626 Stadlbauer, D., Amanat, F., Chromikova, V., Jiang, K., Strohmeier, S., Arunkumar, G.A., Tan, J., Bhavsar,
- D., Capuano, C., Kirkpatrick, E., et al. (2020). SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol
 for a Serological Assay, Antigen Production, and Test Setup. Curr Protoc Microbiol *57*, e100.
- 629 10.1002/cpmc.100.
- 630 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M.,
- 631 Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data. Cell 177, 1888-
- 632 1902.e1821. 10.1016/j.cell.2019.05.031.
- 633 Sun, W., Leist, S.R., McCroskery, S., Liu, Y., Slamanig, S., Oliva, J., Amanat, F., Schafer, A., Dinnon, K.H.,
- 634 3rd, Garcia-Sastre, A., et al. (2020). Newcastle disease virus (NDV) expressing the spike protein of SARS-
- 635 CoV-2 as a live virus vaccine candidate. EBioMedicine *62*, 103132. 10.1016/j.ebiom.2020.103132.
- 636 Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S.,
- 637 San, E.J., Msomi, N., et al. (2020). Emergence and rapid spread of a new severe acute respiratory
- 638 syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa.
- 639 medRxiv, 2020.2012.2021.20248640. 10.1101/2020.12.21.20248640.
- 640 Thomson, E.C., Rosen, L.E., Shepherd, J.G., Spreafico, R., da Silva Filipe, A., Wojcechowskyj, J.A., Davis,
- 641 C., Piccoli, L., Pascall, D.J., Dillen, J., et al. (2021). Circulating SARS-CoV-2 spike N439K variants maintain
- fitness while evading antibody-mediated immunity. Cell. 10.1016/j.cell.2021.01.037.
- 643 Turner, J.S., Zhou, J.Q., Han, J., Schmitz, A.J., Rizk, A.A., Alsoussi, W.B., Lei, T., Amor, M., McIntire, K.M.,
- Meade, P., et al. (2020). Human germinal centres engage memory and naive B cells after influenza
 vaccination. Nature *586*, 127-132. 10.1038/s41586-020-2711-0.
- 646 Wajnberg, A., Amanat, F., Firpo, A., Altman, D.R., Bailey, M.J., Mansour, M., McMahon, M., Meade, P.,
- 647 Mendu, D.R., Muellers, K., et al. (2020). Robust neutralizing antibodies to SARS-CoV-2 infection persist
 648 for months. Science *370*, 1227-1230. 10.1126/science.abd7728.
- 649 Walsh, E.E., Frenck, R., Falsey, A.R., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Mulligan,
- M.J., Bailey, R., et al. (2020). RNA-Based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy
 Study. medRxiv, 2020.2008.2017.20176651. 10.1101/2020.08.17.20176651.
- Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C.O., Finkin, S., Schaefer-Babajew, D., Cipolla,
- Mang, 2., Schnidt, F., Weisblah, F., Maceksell, F., Barles, C.O., Finkin, S., Schaeter Babajew, D., Cipon
 M., Gaebler, C., Lieberman, J.A., et al. (2021). mRNA vaccine-elicited antibodies to SARS-CoV-2 and
- 654 circulating variants. Nature. 10.1038/s41586-021-03324-6.
- 655 Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J.C., Muecksch, F., Rutkowska, M.,
- Hoffmann, H.H., Michailidis, E., et al. (2020). Escape from neutralizing antibodies by SARS-CoV-2 spike
 protein variants. Elife *9*. 10.7554/eLife.61312.
- 658 Wibmer, C.K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Lambson, B.E., Vermeulen, M.,
- van den Berg, K., Rossouw, T., Boswell, M., et al. (2021). SARS-CoV-2 501Y.V2 escapes neutralization by
- 660 South African COVID-19 donor plasma. bioRxiv, 2021.2001.2018.427166. 10.1101/2021.01.18.427166.
- Wilson, P., Stamper, C., Dugan, H., Li, L., Asby, N., Halfmann, P., Guthmiller, J., Zheng, N.Y., Huang, M.,
- 662 Stovicek, O., et al. (2020). Distinct B cell subsets give rise to antigen-specific antibody responses against
- 663 SARS-CoV-2. Res Sq. 10.21203/rs.3.rs-80476/v1.

- Wohlbold, T.J., Chromikova, V., Tan, G.S., Meade, P., Amanat, F., Comella, P., Hirsh, A., and Krammer, F.
- 665 (2016). Hemagglutinin Stalk- and Neuraminidase-Specific Monoclonal Antibodies Protect against Lethal
- 666 H10N8 Influenza Virus Infection in Mice. J Virol *90*, 851-861. 10.1128/JVI.02275-15.
- 667 Wohlbold, T.J., Nachbagauer, R., Xu, H., Tan, G.S., Hirsh, A., Brokstad, K.A., Cox, R.J., Palese, P., and
- 668 Krammer, F. (2015). Vaccination with adjuvanted recombinant neuraminidase induces broad
- heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. mBio 6,
 e02556. 10.1128/mBio.02556-14.
- 671 Wrammert, J., Koutsonanos, D., Li, G.M., Edupuganti, S., Sui, J., Morrissey, M., McCausland, M.,
- 672 Skountzou, I., Hornig, M., Lipkin, W.I., et al. (2011). Broadly cross-reactive antibodies dominate the
- human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 208, 181-193.
 jem.20101352 [pii]
- 675 10.1084/jem.20101352.
- 676 Wrammert, J., Smith, K., Miller, J., Langley, W.A., Kokko, K., Larsen, C., Zheng, N.Y., Mays, I., Garman, L.,
- 677 Helms, C., et al. (2008). Rapid cloning of high-affinity human monoclonal antibodies against influenza
- 678 virus. Nature 453, 667-671. 10.1038/nature06890.
- 679 Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O., Graham, B.S., and McLellan,
- 580 J.S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science.
- 681 10.1126/science.abb2507.
- Wu, K., Werner, A.P., Moliva, J.I., Koch, M., Choi, A., Stewart-Jones, G.B.E., Bennett, H., Boyoglu-Barnum,
- 683 S., Shi, W., Graham, B.S., et al. (2021). mRNA-1273 vaccine induces neutralizing antibodies against spike
- mutants from global SARS-CoV-2 variants. bioRxiv, 2021.2001.2025.427948.
- 685 10.1101/2021.01.25.427948.
- 686 Ye, J., Ma, N., Madden, T.L., and Ostell, J.M. (2013). IgBLAST: an immunoglobulin variable domain
- 687 sequence analysis tool. Nucleic Acids Res 41, W34-40. 10.1093/nar/gkt382.
- 688

689 Figure Legends

690 Figure 1: Antibody responses in individuals vaccinated with mRNA-based SARS-CoV-2 vaccines. 691 Antibody responses of convalescent individuals and vaccinees to full length spike protein (A) and RBD 692 (B) as measured by ELISA and neutralizing activity of the sera of the same individuals in a 693 microneutralization assay against authentic SARS-CoV-2 (C). Convalescent individuals were grouped based on their initial antibody response (measured in a CLIA laboratory) to spike protein into +, ++, and 694 695 +++. D shows ratios between binding and neutralizing antibody levels in vaccinees and convalescent 696 individuals. Higher ratios indicate a bias towards non-neutralizing antibodies. E, F, G and H show 697 antibody responses against α -coronavirus 229E and NL63 and β -coronavirus OC43 and HKU1 spike 698 proteins over time. Bars represent the geometric mean, error bars represent the 95% confidence 699 intervals.

700

Figure 2. Characterization of mAbs derived from vaccine plasmablasts. Binding of plasmablasts derived from three vaccinees (V3, V5 and V6) against full length spike (A), RBD (B), NTD (C) and S2 (D). E shows the percentages of the respective antibodies per subject. F shows neutralizing activity of the mABs against authentic SARS-CoV-2 and the proportion of neutralizing antibodies per subject is shown in G. H and I show reactivity of mAbs to spike protein of human β-coronaviruses OC43 and HKU1. MBC = minimal binding concentration. All experiments except data shown in H and I were performed in duplicates and the mean of the duplicates is shown with standard deviation. For H and I a representativedataset from a singlet ELISA run is shown.

709

710 Figure 3. Characterization of bulk sorted plasmablasts via single-cell RNA sequencing. (A) Uniform 711 manifold approximation and projection (UMAP) of scRNAseq from bulk plasmablast with recovered BCR sequences (purple) or unrecovered (grey). (B) UMAP overlay of percent of cellular population expressing 712 713 MZB1, PRDM1, and XPB1. Hexbin equals 80 individual cells. (C) UMAP overlay of BCR sequences with 714 confirmed spike binding activity. (D) Proportional composition of heavy chains genes in the spike binding 715 sequences broken down by sample. (E) Comparison of nucleotide-level mutation frequency in 716 immunoglobulin heavy chain variable (IGHV) genes between plasmablasts clonally related to spike 717 binding mAbs from SARS-CoV-2 vaccinees, plasmablasts sorted from PBMCs one week after seasonal 718 influenza vaccination and found in vaccine-responding B cell clones, and naïve B cells found in blood of 719 an influenza vaccinee (left panel); and between plasmablasts from SARS-CoV-2 vaccinees found to be 720 clonally related to spike-binding mAbs that were, respectively, cross-reactive and non-cross-reactive to 721 human β-coronaviruses spike proteins (right panel). P values were generated using a two-sided Kruskal-722 Wallis test with Dunn's post-test (left) or a Mann-Whitney U test (right).

723

724 Figure 4. Mapping of the amino-acid substitutions and deletions onto the structure of the SARS-CoV-2 725 spike glycoprotein. A lists mutations of the three major variants of concern B.1.17, B.1.315 and P.1. B 726 shows these mutations mapped onto the structure of the spike glycoprotein (model generated by 727 superposition of PDB 6M0j and 7C2L (Chi et al., 2020; Lan et al., 2020)). One RBD in the up conformation 728 (red) is bound with ACE2 receptor (pink). The NTD is colored blue and the various amino-acid 729 substitutions are shown as yellow spheres. One spike protomer is shown in bold colors while the other 730 two are colored white. C shows competition between ACE2 and neutralizing RBD targeting mAbs PVI.V3-731 9 and PVI.V6-4 for binding to RBD. D BLI- measured binding affinities of the RBD mutants to ACE2, as 732 well as the calculated fold change, are shown in the table on the right.

733

734 Figure 5. Binding and neutralization of SARS-CoV-2 variants. Binding of serum samples from 735 convalescent individuals, vaccinees and vaccine derived mAbs to a panel of RBD mutants is shown in A, 736 B and C respectively. The red line in A indicates the average reduction. Dotted lines in A and B indicate 737 100%, the line with smaller dots in C indicated reactivity of the anti-his coating control. For vaccinees 738 late samples (V1=d89, V2=d102, V3=d47, V4=d48, V5=49 and V6=48) were assayed. D shows the spike 739 mutations of virus isolate PVI14252 modelled on a co-crystal structure of the SARS-CoV-2 spike protein 740 with ACE2 (model generated by superposition of PDB 6M0j and 7C2L (Chi et al., 2020; Lan et al., 2020)). 741 E and F show the inhibitory effect of vaccine serum and vaccine derived neutralizing antibodies on both 742 wild type SARS-CoV-2 and PV14252. G shows neutralizing activity of the plasmablast derived neutralizing 743 antibodies aginst wild type, B.1.1.7 and B.1.351 virus isolates. Of note, these comparative assays were 744 always performed side by side but sets are run by different operators and on a different Vero cell clone 745 as the neutralization assays shown in Figure 2.

746

747 STAR Methods

748 **KEY RESOURCE TABLE**

749

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies	·	
CD20-PB (clone 2H7)	BioLegend	Cat#302320
CD71-FITC (clone CY1G4)	BioLegend	Cat#334104
IgD-PerCP-Cy5.5 (clone IA6-2)	BioLegend	Cat#348208
CD19-PE (clone HIB19)	BioLegend	Cat#302254
CD38-PE-Cy7 (clone HIT2)	BioLegend	Cat#303516
CD3-Alexa 700 (clone HIT3a)	BioLegend	Cat#300324
Streptavidin (HRP)	Abcam	Cat#7403
Biotin Anti-6X His tag® antibody	Abcam	Cat#27025
Anti-mouse IgG HRP	Rockland antibodies and assays	catalog #610-4302
Mouse anti-histidine antibody	Takara	catalog #631212
Anti-human IgG HRP	Millipore Sigma	catalog #A0293
Bacterial and virus strains		
SARS-CoV-2 (isolate USA - WA1/2020)	BEI	NR-52281
SARS-CoV-2 patient isolate	PVI, Mount Sinai	PV14252
SARS-CoV-2 hCoV-19/South Africa/KRISP- K005325/2020	BEI	NR-54009
SARS-CoV-2 Isolate hCoV-19/England/204820464/2020	BEI	NR-54000
Biological samples		
Serum samples	PVI, Mount Sinai	V1-V6, 30 convalescents
Blood samples	PVI, Mount Sinai	V3, V5, V6
Chemicals, peptides, and recombinant proteins		
Zombie Aqua	BioLegend	Cat#423101
10x Lysis Buffer	Clontech	Cat#635013
RNase Inhibitor, Murine	New England BioLabs	Cat# M0314L
Maxima H Reverse Transcriptase	Thermo	Cat#EP0753
Protein A agarose	Thermo	Cat#15918014
Chromium Next GEM Single Cell 5' Kit v2	10X Genomics	Cat#1000263
Library Construction Kit	10X Genomics	Cat#1000190
Chromium Next GEM Chip K Single Cell Kit	10X Genomics	Cat#1000286
Chromium Single Cell Human BCR Amplification Kit	10X Genomics	Cat# 1000253
Dual Index Kit TT Set A	10X Genomics	Cat#1000215
SPRIselect Reagent Kit	Beckman Coulter	Cat# B23318
High Sensitivity D5000 ScreenTape	Agilent	Cat# 5067-5592
High Sensitivity D5000 Reagents	Agilent	Cat# 5067-5593

Bovine Serum Albumin	Fisher Bioreagents	Cat# BP9700-100
SARS-CoV-2 RBD	Krammer lab, Mount	N/A
SARs-CoV-2 variant RBDs: E406Q, N417V, N439K, N440K, Y453F, E484K, F486A, N487R, F490K, Q493R, B.1.1.7, N439K/Y453F, B.1.351 and P.1	Krammer lab, Mount Sinai	N/A
SARS-CoV-2 Spike (2P)	Krammer lab, Mount Sinai	N/A
OC43 spike	Krammer lab, Mount Sinai	N/A
HKU spike	Krammer lab, Mount Sinai	N/A
229E spike	Krammer lab, Mount Sinai	N/A
NL63 spike	Krammer lab, Mount Sinai	N/A
SARS-CoV-2 NTD	Sino Biological	40591-V49H
SARS-CoV-2 S2	Sino Biological	40590-V02H
Remdesivir	NIH	N/A
Critical commercial assays		
Anti-human IgG Fc Biosensors	Sartorius Corporation	Cat# 18-5001
Ni-NTA (NTA) Biosensors	Sartorius Corporation	Cat# 18-5101
Deposited data		
Human B cell receptor repertoire data after seasonal influenza vaccination	Turner et al., 2020	PRJNA610059
Experimental models: cell lines		
Expi293E	Gibco	Cat#A14527
Vero F6 cells		#CPL - 1596
Expi293E	Thermo Fisher	A14528
Experimental models: organisms/strains		
Oligonucleotides		•
oligo-dT ₂₃ VN primer, random Hexamers	Integrated DNA	N/A

	Technologies	
1 st PCR primers & nested PCR primers	Smith et al., 2009	N/A
Gibson Cloning Primers	Ho et al., 2009	N/A
M13 Reverse (-27)	Integrated DNA Technologies	51-01-13-03
Recombinant DNA		
pCAGGS	https://www.ncbi.nlm.n	N/A
	ih.gov/pmc/articles/PM C4248980/	
pCAGGS SARS-CoV-2	https://pubmed.ncbi.nl	N/A
	m.nih.gov/32398876/	
pCAGGS SARS-CoV-2 SA variant spike	This paper	N/A
pCAGGS SARS-CoV-2 UK variant spike	This paper	N/A
pCAGGS SARS-CoV-2 RBD	https://pubmed.ncbi.nl m.nih.gov/32398876/	N/A
pCAGGS SARS-CoV-2 variant RBDs: E406Q, N417V,	This paper	N/A
N439K, N440K, Y453F, E484K, F486A, N487R, F490K,		
Q493R, B.1.1.7, N439K/Y453F, B.1.351 and P.1		N1/A
OC43 2P spike plasmid	https://www.ncbi.nim.n ih.gov/pmc/articles/PM C5584442/	N/A
HKU1 2P spike plasmid	https://www.ncbi.nlm.n ih.gov/pmc/articles/PM C5584442/	N/A
Software and algorithms		
Cell Ranger (v5)	10x Genomics	https://www.support.
Seurat (v3.2.2)	Stuart & Butler. et al	10xgenomics.com https://satijalab.org/s
	2019	eurat/
scRepertoire (v1.1.3)	Borcherding, et al, 2020	https://github.com/nc borcherding/scReper toire
schex (v1.3.0)	Saskia Freytag	https://github.com/S askiaFreytag/schex
IgBLAST v1.14.0	Ye et al., 2013	https://ftp.ncbi.nih.go v/blast/executables/i gblast/release/1.14.0
Change-O v0.4.6	Gupta et al., 2015	/ http://changeo.readt
SHazaM v1.0.2	Gupta et al., 2015	http://shazam.readth
GraphPad Prism v9.0.2	GraphPad Software	edocs.io/ www.graphpad.com
BLItz Pro 1.3.1.3	Forté Bio	www.fortebio.com/bli tz.html

Microsoft Excel	Microsoft	https://www.microsof t.com/en- ww/microsoft- 365/excel
Other		
International ImMunoGeneTics Information System (IMGT) human immunoglobulin germline references, release 201931-4	Giudicelli et al., 2005	http://www.imgt.org/v quest/refseqh.html#r efdir

750

751 **RESOURCE AVAILABILITY**

752 Lead contact

- 753 Requests for information or reagents should be directed to Florian Krammer
- 754 (florian.krammer@mssm.edu).

755 Materials availability

756 Plasmids for SARS-CoV-2 antigens have been deposited at BEI Resources and can also be requested from

- the authors. Plasmids for human coronavirus spikes can be requested from NIH's Vaccine Research Center. MAbs and plasmids for mAb expression can be obtained from the authors upon reasonable
- 759 request. Variant viruses can be sourced from BEI Resources.

760 Data and code availability

The published article contains all data sets analyzed during the study except for BCR sequencing datawhich can be requested from Ali H. Ellebedy upon reasonable request.

763 EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects and specimen collection. The study protocols for the collection of clinical specimens from individuals with and without SARS-CoV-2 infection by the Personalized Virology Initiative were reviewed and approved by the Mount Sinai Hospital Institutional Review Board (IRB-16-16772; IRB-16-00791; IRB-20-03374). All participants provided written informed consent prior to collection of specimen and clinical information. All specimens were coded prior to processing and analysis. An overview of the characteristics of the vaccinees as well as the study participants with and without COVID-19 is provided in Suppl. Table 1. The vaccinees received two doses of the Pfizer mRNA vaccine.

771 Whole blood was collected via phlebotomy in serum separator tubes (SST) or 772 ethylenediaminetetraacetic acid (EDTA) tubes. Serum was collected after centrifucation as per 773 manufacturers' instructions. Peripheral blood mononuclear cells (PBMCs) isolation was performed by 774 density gradient centrifugation using SepMate tubes (Stemcell) according to manufacturers' 775 instructions. PBMCs were cryo-preserved and stored in liquid nitrogen until analysis.

776 Recombinant proteins. All recombinant proteins were produced using Expi293F cells (Life 777 Technologies). Receptor binding domain (RBD) and spike protein of SARS-CoV-2 (GenBank: 778 MN908947.3) was cloned into a mammalian expression vector, pCAGGS as described earlier (Amanat et 779 al., 2020b; Stadlbauer et al., 2020). RBD mutants were generated in the pCAGGS RBD construct by 780 changing single residues using mutagenesis primers. All proteins were purified after transient 781 transfections with each respective plasmid. Six-hundred million Expi293F cells were transfected using 782 the ExpiFectamine 293 Transfection Kit and purified DNA. Supernatants were collected on day four post 783 transfection, centrifuged at 4,000 g for 20 minutes and finally, the supernatant was filtered using a 0.22 784 um filter. Ni-NTA agarose (Qiagen) was used to purify the protein via gravity flow and proteins were 785 eluted as previously described (Amanat et al., 2020b; Stadlbauer et al., 2020). The buffer was exchanged using Amicon centrifugal units (EMD Millipore) and all recombinant proteins were finally re-suspended 786 787 in phosphate buffered saline (PBS). Proteins were also run on a sodium dodecyl sulphate (SDS) 788 polyacrylamide gels (5-20% gradient; Bio-Rad) to check for purity (Amanat et al., 2018; Margine et al., 789 2013). Plasmids to express recombinant spike proteins of 229E, HKU1, NL63 and OC43 were generously provided by Dr. Barney Graham (Pallesen et al., 2017). NTD and S2 proteins were purchased from 790 791 SinoBiologics.

792 **METHOD DETAILS**

793

794 ELISA. Ninety-six well plates (Immulon 4 HBX; Thermo Scientific) were coated overnight at 4°C with recombinant proteins at a concentration of 2 ug/ml in PBS (Gibco; Life Technologies) and 50 uls/well. 795 796 The next day, the coating solution was discarded. One hundred uls per well of 3% non-fat milk prepared 797 in PBS (Life Technologies) containing 0.01% Tween-20 (TPBS; Fisher Scientific) was added to the plates to 798 block the plates for 1 hour at room temperature (RT). All serum dilutions were prepared in 1% non-fat 799 milk prepared in TPBS. All serum samples were diluted 3-fold starting at a dilution of 1:50. After the 800 blocking step, serum dilutions were added to the respective plates for two hours at RT. Next, plates 801 were washed thrice with 250 uls/well of TPBS to remove any residual primary antibody. Secondary 802 antibody solution was prepared in 1% non-fat milk in TPBS as well and 100 uls/well was added to the 803 plates for 1 hour at RT. For human samples, anti-human IgG conjugated to horseradish peroxidase (HRP) 804 was used at a dilution of 1:3000 (Millipore Sigma; catalog #A0293). For mouse samples, anti-mouse IgG conjugated to HRP was used at the same dilution (Rockland antibodies and assays; catalog #610-4302). 805 806 Specifically, a mouse anti-histidine antibody (Takara; catalog #631212) was used as a positive control to detect proteins with a hexa-histidine tag. Once the secondary incubation was done, plates were again 807 808 washed thrice with 250uls/well of TPBS. Developing solution was made in 0.05M phosphate-citrate 809 buffer at pH 5 using o-phenylenediamine dihydrochloride tablets (Sigma-Aldrich; OPD) at a final 810 concentration of 0.04 mg/ml. One hundred uls/well of developing solution was added to each plate for 811 exactly 10 minutes after which the reaction was halted with addition of 50 uls/well of 3M hydrochloric acid (HCl). Plates were read at an optical density of 490 nanometers using a Synergy 4 (BioTek) plate 812 813 reader. Eight wells on each plate received no primary antibody (blank wells) and the optical density in 814 those wells was used to assess background. Area under the curve was calculated by deducting the 815 average of blank values plus 3 times standard deviation of the blank values. All data was analyzed in 816 Graphpad Prism 7. This protocol has been described in detail earlier (Bailey et al., 2019; Wohlbold et al., 817 2015).

818 Purified monoclonal antibodies were used at a concentration of 30 ug/ml and then subsequently diluted 819 3-fold. Purified monoclonal antibodies were only incubated on the coated plates for an hour. The 820 remaining part of the protocol was the same as above (Amanat et al., 2020a; Wohlbold et al., 2016).

Bio-layer Interferometry Binding Experiments. Bio-layer Interferometry (BLI) experiments were performed using the BLItz system (fortéBIO, Pall Corporation). Recombinant human Fc fusion ACE2 (SinoBiological) was immobilized on an anti-human IgG Fc biosensor, and RBDs were then applied to obtain binding affinities. Single-hit concentrations were tested at 5.8 μM for binding. All measurements were repeated in subsequent independent experiments. K_D values were obtained through local fit of the curves by applying a 1:1 binding isotherm model using vendor-supplied software. All experiments were performed in PBS pH 7.4 and at room temperature.

828

hACE2 competition interferometry experiments, Interferometry experiments were performed using a BLItz instrument (fortéBIO, Sartorius). Polyhistidine-tagged Fabs were immobilized on Ni-NTA biosensors at 10 μ g/ml and SARS-CoV-2 RBD was supplied as analyte at 5 μ M alone or pre-mixed with hACE2-Fc at different concentrations. Maximal signal at association (Rmax) was used to plot the concentrationdependent competition with hACE2. All experiments were performed in PBS at pH 7.4 and at room temperature.

835

836 RBD-hACE2 ELISA. 25ng of hACE2-Fc fusion protein expressed in HEK293 cells were adhered to high-837 capacity binding, 96 well-plates (Corning) overnight in PBS. Plates were blocked with 5% BSA in PBS 838 containing Tween-20 (PBS-T) for 1hr at room temperature (RT). Blocking solution was discarded and 5-839 fold dilutions of 6xHis-tagged RBDs in PBS were added to wells and incubated for 1hr at RT. Plates were 840 then washed three times with PBS-T. Anti-polyhistidine IgG-Biotin (Abcam) in PBS-T was added to each 841 and incubated for 1hr at RT. Plates were then washed three times with PBS-T. Streptavidin-HRP (Abcam) 842 in PBS-T was added to each and incubated for 1hr at RT. Plates were then washed three times with PBS-843 T Plates were developed using 1-Step Ultra TMB substrate (ThermoFisher), stopped with sulfuric acid 844 and immediately read using a plate reader at 450nm. Data were plotted using Prism 9 (GraphPad 845 Software) and affinities determined by applying a nonlinear regression model.

846

847 Viruses and cells. Vero.E6 cells (ATCC #CRL-1586) cells were maintained in culture using Dulbecco's 848 Modified Eagles Medium (DMEM, Gibco) which was supplemented with 10% fetal bovine serum (FBS, 849 Corning) and antibiotics solution containing 10,000 units/mL of penicillin and 10,000 µg/mL of 850 streptomycin (Pen Strep, Gibco)(10). Wild type SARS-CoV-2 (isolate USA-WA1/2020), hCoV-19/South Africa/KRISP-K005325/2020 (B.1.351, BEI Resources NR-54009) and hCoV-19/England/204820464/2020 851 852 (B.1.1.7, BEI Resources NR-54000) were grown in cells for 3 days, the supernatant was clarified by 853 centrifugation at 4,000 g for 5 minutes and aliquots were frozen at -80°C for long term use. The viruses 854 were subjected to deep sequencing to ensure that no mutations had taken place in culture. The 855 polybasic cleavage site changed to WRAR in the B.1.351 variant virus during cultivation in cell culture (as 856 known for this virus at BEI Resources) and no other unexpected mutations occurred. A primary virus 857 isolate, PV14252, bearing mutations and deletions in the spike was obtained by incubating 200 uls of 858 viral transport media from the nasopharyngeal swab with Vero.E6 cells. The sequence of the passage 2 859 viral isolate was identical to the sequence obtained directly from the clinical specimen. Sequencing was 860 performed on the Illumina platform as described previously (Gonzalez-Reiche et al., 2020). Both 861 replication competent viruses were used to test serum from study participants and antibodies for 862 neutralization activity.

863

864 Neutralization assay. Twenty-thousand cells in 100 uls per well were seeded on sterile 96-well cell 865 culture plates one day prior to the neutralization assay. In general, cells were used at 90% confluency to 866 perform the assay. All serum samples were heat-inactivated to eliminate any complement activity. Serial dilutions of serum samples were made in 1X minimal essential medium (MEM; Life Technologies) 867 868 starting at a dilution of 1:20. All work with authentic SARS-CoV-2 (isolate USA-WA1/2020 and PV14252) 869 was done in a biosafety level 3 (BSL3) laboratory following institutional biosafety guidelines and has 870 been described in much greater detail earlier (Amanat et al., 2020b; Amanat et al., 2020c). Six hundred 871 median cell culture infectious doses (TCID₅₀s) of authentic virus (USA-WA1/2020 and PV14252) was 872 added to each serum dilution and virus-serum mixture was incubated together for 1 hour inside the 873 biosafety cabinet. Media from the cells was removed and 120 uls of the virus-serum mixture was added 874 onto the cells for 1 hour at 37°C. After one hour, the virus-serum mixture was removed and 100 uls of 875 each corresponding dilution was added to every well. In addition, 100uls of 1X MEM was also added to 876 every well. Cells were incubated for 48 hours at 37°C after which the media was removed and 150 uls of 877 10% formaldehyde (Polysciences) was added to inactivate the virus. For assay control, remdesivir was 878 used against both the wild type virus as well as the patient isolate. After 24 hours, cells were 879 permeabilized and stained using an anti-nucleoprotein antibody 1C7 as discussed in detail earlier 880 (Amanat et al., 2020b; Sun et al., 2020).

881 Cell sorting and flow cytometry. Staining for sorting was performed using cryo-preserved PBMCs in 2% 882 FBS and 2 mM ethylenediaminetetraacetic acid (EDTA) in PBS (P2). Cells were stained for 30 min on ice 883 with CD20-Pacific Blue (2H7, 1:400), Zombie Aqua, CD71-FITC (CY1G4, 1:200), IgD-PerCP-Cy5.5 (IA6-2, 884 1:200), CD19-PE (HIB19, 1:200), CD38-PE-Cy7 (HIT2, 1:200), and CD3-Alexa 700 (HIT3a, 1:200), all BioLegend. Cells were washed twice, and single plasmablasts (live singlet CD19⁺ CD3⁻ IgD¹⁰ CD38⁺ CD20⁻ 885 886 CD71⁺) were sorted using a FACSAria II into 96-well plates containing 2 µL Lysis Buffer (Clontech) 887 supplemented with 1 U/ μ L RNase inhibitor (NEB) and immediately frozen on dry ice, or bulk sorted into 888 PBS supplemented with 0.05% BSA and processed for single cell RNAseq.

889 Monoclonal antibody (mAb) generation. Antibodies were cloned as described previously (Wrammert et 890 al., 2011). Briefly, VH, Vk, and V λ genes were amplified by reverse transcription-PCR and nested PCR 891 reactions from singly sorted plasmablasts using primer combinations specific for IgG, IgM/A, Igk, and Ig λ 892 from previously described primer sets (Smith et al., 2009) and then sequenced. To generate recombinant antibodies, restriction sites were incorporated via PCR with primers to the corresponding 893 894 heavy and light chain V and J genes. The amplified VH, Vk, and VA genes were cloned into IgG1 and Igk 895 expression vectors, respectively, as described previously (Nachbagauer et al., 2018; Wrammert et al., 896 2008). Heavy and light chain plasmids were co-transfected into Expi293F cells (Gibco) for expression, 897 and antibody was purified with protein A agarose (Invitrogen).

898 Single-cell RNAseq library preparation and sequencing. Bulk-sorted plasmablasts were processed using 899 the following 10× Genomics kits: Chromium Next GEM Single Cell 5' Kit v2 (PN-1000263); Library 900 Construction Kit (PN-1000190); Chromium Next GEM Chip K Single Cell Kit (PN-1000286); Chromium 901 Single Cell Human BCR Amplification Kit (PN- 1000253), and Dual Index Kit TT Set A (PN-1000215). The 902 cDNAs were prepared after GEM generation and barcoding, followed by GEM RT reaction and bead 903 cleanup steps. Purified cDNA was amplified for 10–14 cycles before cleaning with SPRIselect beads. 904 Then, samples were evaluated on a 4200 TapeStation (Agilent) to determine cDNA concentration. B-cell 905 receptor (BCR) target enrichments were performed on full-length cDNA. Gene expression and enriched 906 BCR libraries were prepared as recommended by the Chromium Next GEM Single Cell 5' Reagent Kits v2 907 (Dual Index) user guide, with appropriate modifications to the PCR cycles based on the calculated cDNA 908 concentration. The cDNA libraries were sequenced on Novaseq S4 (Illumina), targeting a median 909 sequencing depth of 50,000 and 5,000 read pairs per cell for gene expression and BCR libraries, 910 respectively.

911 Single cell RNAseq analysis. Single-cell RNA sequencing and BCR sequencing data was processed using 912 Cell Ranger v5.0 and the GRCh38-2020 version of the human genome provided by the manufacturer. 913 Total recovered cells by RNA sequencing were V3: 6,608, V5: 5,256, and V6: 6,325 with a mean of 914 90.64% read mapped to the genome. Count matrices were processed in R (v4.0.2) using the Seurat 915 (v3.2.2) R package (Stuart et al., 2019). Cells were filtered for percentage of mitochondrial genes less 916 than 15% and number features less than 4,000. The three specimen sequencing runs were integrated 917 using log-normalized count values and canonical correlation approach (Stuart et al., 2019) with 2,000 918 variable features. The resulting single-cell object underwent principal component analysis and the top 919 30 principal components were used for uniform manifold approximation and projection and identifying 920 neighbors. Clustering was performed using a resolution of 0.6. The integrated RNA sequencing object 921 included 12,568 cells with V3: 4,584, V5: 3,523, and V6: 4,461 cells. The filtered contig annotation 922 output of Cell Ranger vdj were loaded into R and processed using the scRepertoire (v1.1.3) R package 923 (Borcherding et al., 2020). Clonotypes were assigned using igraph (v1.2.6) network analysis of 924 components generated from CDR3 sequences greater than or equal to 0.85 normalized Levenshtein 925 distance. Percent of cells expressing genes along the UMAP embedding was visualized using the schex 926 (v1.3.0) R package. For mutation analysis, heavy chains of mAbs and single-cell BCRs first underwent 927 V(D)J gene annotation using IgBLAST (v1.14.0) (Ye et al., 2013) with human reference (release 201931-4) 928 from the international ImMunoGeneTics information system (IMGT) (Giudicelli et al., 2005) and then 929 parsing using Change-O (v0.4.6) (Gupta et al., 2015). Mutation frequency was calculated, as described in 930 (Turner et al., 2020), using the "calcObservedMutations" function from SHazaM (v.1.0.2) (Gupta et al., 931 2015) and by counting the number of nucleotide mismatches from the germline sequence in the heavy 932 chain variable segment leading up to the complementary-determining region 3 (CDR3), while excluding 933 the first 18 positions that could be error-prone due to the primers used for generating the mAb 934 sequences.

935

936 QUANTIFICATION AND STATISTICAL ANALYSIS

Structure visualization and statistical analysis. Structural figures were modeled and rendered in Pymol 937 938 (The PyMOL Molecular Graphics System, Version 2.4 Schrödinger, LLC). Statistical analysis was 939 performed in GraphPad Prism using a one-way ANOVA with correction for multiple comparisons for 940 Supplementary Figure 1. For Figure 3, p values were generated using a two-sided Kruskal-Wallis test 941 with Dunn's post-test or a Mann-Whitney U test. Significance was defined as p<0.05, p values are 942 directly indicated in graphs. Number of subjects can be found in the results and methods section, 943 definition of center, and dispersion and precision measures are described in the respective figure 944 legends.

945

946 ADDITIONAL RESOURCES

947 Not applicable.

948

949 Supplementary Figure Legends

950

951 Supplementary Figure 1. Full length spike to RBD ratios (A) and comparison of binding to neutralizing 952 titer ratios between naturally infected and vaccinated individuals (B) (related to Figure 1). Statistical 953 analysis was performed in GraphPad Prism using a one-way ANOVA with correction for multiple 954 comparisons, significance was defined as p<0.05.

955

Supplementary Figure 2. Gating strategy for sorting plasmablasts from total PBMCs isolated one week
 after second immunization (related to Figure 2 and 3).

958

Supplementary Figure 3. Representative Biolayer Interferometry binding isotherms from two
 independent experiments. The raw data are show in pink and the Langmuir 1:1 kinetics fit is show in
 black (related to Figure 4).

962

963 Supplementary Figure 4. Binding of SARS-CoV-2 variant RBDs to ACE2. A ELISA curves of the RBD 964 variants binding to human ACE2. Shown are the binding curves calculated with nonlinear regression to 965 the arithmetic mean values from eight replicates ± SEM. The calculated steady-state K_D values ± SEM 966 from end-point ELISA measurements and the fold-change in comparison to wild type RBD are reported 967 in B (related to Figure 4).

968

- Antibody responses after SARS-CoV-2 mRNA vaccination target RBD, NTD and S2
- SARS-CoV-2 mRNA vaccination induces a high rate of non-neutralizing antibodies
- Crossreactive antibodies to seasonal β-coronaviruses are induced by vaccination
- Variant mutation N501Y enhances affinity to human ACE2 while E484K reduces it

An analysis of mRNA vaccine-induced polyclonal antibodies and plasmablast derived monoclonal antibodies from individuals vaccinated against SARS-CoV-2 identifies a high proportion of non-neutralizing antibodies, the induction of cross-reactive antibodies to seasonal coronaviruses and also maps the regions in the spike protein that are targeted, even among viral variants.

ournal Preveroo

KIT

Vaccinees	Spike IgG response ^{1*}	Sex	Age group (yrs)	Specimen tested
V1	Strong positive	F	>60	several longitudinal
				time points including
				days 34, 68, 89 and
				188 post vaccination
V2	Strong positive	M	30-40	several longitudinal
				time points including
				days 19, 47, 74, 102,
				129, 157 and 186 post
				vaccination
V3	Strong positive	F	50-60	several longitudinal
				time points including
				days 19, 27, 47, 77
			N	and 102 post
				vaccination
V4	Strong positive	М	>60	several longitudinal
				time points including
				days 27, 48 and 89
			40.50	post vaccination
V5	Strong positive	F	40-50	several longitudinal
				time points including
				27, 49 and 83 days
<u>)/(</u>			20.40	
VO	Strong positive	F	30-40	several longitudinal
				27 48 and 82 days
				27, 40 and 05 days
Seronegative		Sov		Days from last
nost nandemic		Jex	(vrs)	negative serology test
post panaenne			(9:3)	when the sample was
				taken
N1	Negative	F	40-50	23
N2	Negative	F	20-29	24
N3	Negative	F	20-29	23
N4	Negative	F	30-35	22
Seropositive,		Sex	Age group	Days post onset of
natural			(yrs)	COVID-19 symptoms
infection				when the sample was
				taken
P1	Weak positive	М	20-29	260

Supplemental Table 1: Study participant and biospecimen information (related to Figure 1)

P2	Weak positive	М	50-59	no data available	
P3	Weak positive	F	30-39	111	
P4	Weak positive	F	30-39	221	
P5	Weak positive	F	30-39	254	
P6	Weak positive	F	20-29	247	
P7	Weak positive	М	30-39	220	
P8	Weak positive	F	20-29	Asymptomatic	
P9	Moderate positive	М	30-39	no data available	
P10	Moderate positive	F	30-39	197	
P11	Moderate positive	F	50-59	Asymptomatic	
P12	Moderate positive	F	30-39	Asymptomatic	
P13	Moderate positive	М	30-39	234	
P14	Moderate positive	F	20-29	273	
P15	Moderate positive	М	30-39	Asymptomatic	
P16	Moderate positive	F	20-29	258	
P17	Moderate positive	F	20-29	246	
P18	Moderate positive	М	20-29	Asymptomatic	
P19	Moderate positive	F	F 50-59		
P20	Strong positive	F	50-59	no data available	
P21	Strong positive	F	30-39 245		
P22	Strong positive	М	NA	170	
P23	Strong positive	F	F >60 Asymptomatic		
P24	Strong positive	F	40-49	no data available	
P25	Strong positive	F	50-59	191	
P26	Strong positive	F	30-39	no data available	
P27	Strong positive	F	50-59	113	
P28	Strong positive	М	>60	Asymptomatic	
P29	Strong positive	M	18-19	218	
P30	Strong positive	ve M 50-59 219		219	

¹Samples were categorized based on initial titers obtained from Mount Sinai's CLIA laboratory test. Weak positive: 1:80 – 1:160 weak positive; 1:320-1:960 moderate positive; 1:960-1: ≥2880 strong positive

* All six vaccinees were sero-negative for SARS-CoV-2 without clinical evidence of COVID10 prior to SARS-CoV-2 spike mRNA vaccination.

	Heavy chain Light chain				
Name	Native	Gene usage	HCDR3 AA sequence	Gene usage	LCDR3 AA sequence
	isotype	-	-	_	
PVI.V5-1	IgG1	VH3-23 DH5-18 JH4	CAPHRGQLWFDYW	VK3-20 JK4	CQQYGSSPPTF
PVI.V5-2	IgG1	VH3-21 DH2-2 JH4	CARDLKLSPAAIGWDYFDYW	VK3-15 JK2	CQQYNNWPRSF
PVI.V5-3	IgG1	VH3-7 DH6-13 JH4	CAIFGAAGTDYW	VL3-16 JL3	CLSADSSGTYWVF
PVI.V5-4	IgG1	VH3-30 DH3-22 JH4	CARENNYYDSSGYSYYFDYW	VK3-20 JK2	CQQYGSSPMCSF
PVI.V5-5	IgA1	VH1-69 DH5-24 JH4	CARDFGREWLQYFYFDCW	VK3-20 JK4	CQQYGSSPTF
PVI.V5-6	IgG1	VH3-7 DH3-3 JH4	CARDNNDFWSGYLYFDYW	VL3-10 JL2	CYSTDSSGNHRGVF
PVI.V6-1	IgG1	VH3-30 DH6-19 JH4	CARGAVAGQHSFDNW	VK2-30 JK4	CMQGTHWPPTF
PVI.V6-2	IgG1	VH3-33 DH6-13 JH4	CARDKRGSSSWLDQYFDYW	VL3-21 JL2	CQVWDSSSDHVVF
PVI.V6-3	IgG1	VH4-31 DH3-22 JH5	CARDMISGRGLFDPW	VK1-33 JK2	CQQYDNLPTF
PVI.V6-4	IgG1	VH1-69 DH4-17 JH3	CARGNYDYGDYLLKGSAFDIW	VK4-1 JK2	CQQYYSTPPNTF
PVI.V6-5	IgG1	VH3-30 DH3-10 JH4	CAKDGGYYYYGSGSYPSYFDYW	VK2D-29 JK4	CMQSIQLPLTF
PVI.V6-6	IgG1	VH4-31 DH3-10 JH6	CASEKFLWGQGYYYGMDVW	VL2-14 JL2	CSSYTSSSTLVF
PVI.V6-7	IgG1	VH4-39 DH3-22 JH4	CATQSDYDSSGLEFDYW	VL2-14 JL3	CSSYTSSSSWVF
PVI.V6-8	IgG1	VH4-31 DH3-22 JH3	CARGREEPIVVVTDAFDIW	VK3-11 JK2	CQQRSNWPPMYTF
PVI.V6-9	IgG1	VH3-30 DH2-15 JH4	CAKSGYPYCGGGTCYSGWFDYW	VK1-33 JK2	CQRYDNPPYTF
PVI.V6-10	IgG1	VH1-2 DH6-19 JH6	CAREIAVAGNDYSYGLDVW	VK3-20 JK4	CQQYGSSLLTF
PVI.V6-11	IgG1	VH1-46 DH6-19 JH6	CASQSHWQWLGGGDSYGMDVW	VK1-9 JK2	CQQLNSYPYTF
PVI.V6-12	IgG1	VH5-51 DH1-26 JH4	CARRFGSYPPYFDYW	VL3-21 JL1	CQVWDSNSDLYVF
PVI.V6-13	IgG1	VH3-30 DH5-18 JH4	CAKAGYSYAYGDYYFDYW	VK1-33 JK3	CQHYDNLPPAVTF
PVI.V6-14	IgG1	VH4-39 DH3-10 JH4	CARCRPEYYFGSGSYLDFDYW	VK1-12 JK4	CQQANSFPLTF
PVI.V6-15	IgG1	VH3-30 DH5-18 JH4	CAKDWGWIQLWGLDYW	VL2-18 JL3	CSSYTSSSTWVF
PVI.V3-1	IgG1	VH4-4 DH1-26 JH4	CVSRGVGATREKDYW	VK3-15 JK4	CQQYNNWPPDLTF
PVI.V3-2	IgG1	VH4-39 DH3-10 JH4	CASLDYYGSGSGPGYFDYW	VK3-11 JK4	CQQRSNWLTF
PVI.V3-3	IgG3	VH3-33 DH6-19 JH4	CASDSSGWYYFDYW	VL3-9 JL2	CQVWDSSTVVF
PVI.V3-4	IgG1	VH3-21 DH2-21 JH3	CAVTLLPTYCGGEWCAFDIW	VK3-15 JK2	CQQYNNWPPYTF
PVI.V3-5	IgG1	VH1-69 DH3-22 JH4	CARNYYDSSGSQGMDYW	VK3-11 JK4	CQQRSNWPPVLTF
PVI.V3-6	IgA1	VH3-66 DH3-3 JH4	CARHLGVVI ¹	VK4-1 JK1	CQQYYSTLWTF
PVI.V3-7	IgG3	VH4-39 DH1-26 JH4	CAKPSGSYLGFDYW	VK1-39 JK3	CQQSYSTPFTF
PVI.V3-8	IgG1	VH4-38 DH3-3 JH4	CARSDFSVRVGFDCW	VK4-1 JK2	CQQSYTTNTF
PVI.V3-9	IgG1	VH3-53 DH3-16 JH6	CARDLMEGGGMDVW	VK3-20 JK1	CQQYGSSLGTF
PVI.V3-10	IgG1	VH4-34 DH3-22 JH4	CARSQPLLWSSGYCCDYW	VL2-11 JL2	CCSYAGSYTLVF
PVI.V3-11	IgG1	VH3-64D DH4-11	CVRGPTVTTENDFDSW	VK2-30 JK2	CMQGTHSYTF
		JH4			
PVI.V3-12	IgG2	VH1-46 DH5-24 JH4	CASDPNRDGLALDSW	VK3-20 JK2	CQQYGTSPLYTF
PVI.V3-13	IgG1	VH1-69 DH1-14 JH4	CARDRYHGSPVDYW	VK3-11 JK4	CQQRSNWPPSLTF
PVI.V3-14	IgG1	VH4-31 DH5-12 JH4	CARARYSGSARGPPKQYYFDYW	VK3-20 JK1	CQHLVTF
PVI.V3-15	IgG1	VH3-21 DH3-3 JH3	CARDGGRGYDFWSGYYIGAFDIW	VK3-15 JK4	CQQYNDWPPLTF
PVI.V3-16	IgG1	VH3-33 DH2-15 JH6	CARGLGWDIVVVVSGEMDGMDVW	VL1-40 JL1	CQSYDSSLSGPYVF
PVI.V3-17	IgA1	VH3-20 DH2-2 JH4	CARGEGSSDYW	VK3-20 JK1	CQQYGSSPKTF
PVI.V3-18	IgG1	VH3-30 DH2-15 JH4	CAKASGLYCSGGNCLVADFDYW	VL1-39 JL4	CQQSYSTPLSF
PVI.V3-19	IgG1	VH5-51 DH6-19 JH6	CARRNTSAQYSSGWYVHYYYGMDVW	VK2-28 JK3	CMQALQTPGFTF
PVI.V3-20	IgG1	VH3-30 DH3-3 JH6	CAKDQLGAIFAHYYYYGMDVW	VL1-40 JL1	CQSYDSSLSGYVF
PVI.V3-21	IgG1	VH5-51 DH5-24 JH4	CAKLSRDAYRGPFDYW	VL6-57 JL2	CQSYDSSNPDVVF

Supplemental Table 2: Immunoglobulin gene usage of the spike-mAbs (related to Figure 2 and 3)

¹Indicates absence of the W118 residue from the junction of the CDR3.